Problem UVA211-The Domino Effect

Accept:536  Submit:2504

Time Limit: 3000 mSec

 Problem Description

 Input

The input file will contain several of problem sets. Each set consists of seven lines of eight integers from 0 through 6, representing an observed pattern of pips. Each set is corresponds to a legitimate configuration of bones (there will be at least one map possible for each problem set). There is no intervening data separating the problem sets.

 Output

Correct output consists of a problem set label (beginning with Set #1) followed by an echo printing of the problem set itself. This is followed by a map label for the set and the map(s) which correspond to the problem set. (Multiple maps can be output in any order.) After all maps for a problem set have been printed, a summary line stating the number of possible maps appears. At least three lines are skipped between the output from different problem sets while at least one line separates the labels, echo printing, and maps within the same problem set.
Note: A sample input file of two problem sets along with the correct output are shown.

 Sample Input

5 4 3 6 5 3 4 6
0 6 0 1 2 3 1 1
3 2 6 5 0 4 2 0
5 3 6 2 3 2 0 6
4 0 4 1 0 0 4 1
5 2 2 4 4 1 6 5
5 5 3 6 1 2 3 1
4 2 5 2 6 3 5 4
5 0 4 3 1 4 1 1
1 2 3 0 2 2 2 2
1 4 0 1 3 5 6 5
4 0 6 0 3 6 6 5
4 0 1 6 4 0 3 0
6 5 3 6 2 1 5 3
 
 

 Sample Ouput

Layout #1:
   5   4   3   6   5   3   4   6
   0   6   0   1   2   3   1   1
   3   2   6   5   0   4   2   0
   5   3   6   2   3   2   0   6
   4   0   4   1   0   0   4   1
   5   2   2   4   4   1   6   5
   5   5   3   6   1   2   3   1
 
Maps resulting from layout #1 are:
 
   6  20  20  27  27  19  25  25
   6  18   2   2   3  19   8   8
  21  18  28  17   3  16  16   7
  21   4  28  17  15  15   5   7
  24   4  11  11   1   1   5  12
  24  14  14  23  23  13  13  12
  26  26  22  22   9   9  10  10
 
There are 1 solution(s) for layout #1.
 
 
 
Layout #2:
   4   2   5   2   6   3   5   4
   5   0   4   3   1   4   1   1
   1   2   3   0   2   2   2   2
   1   4   0   1   3   5   6   5
   4   0   6   0   3   6   6   5
   4   0   1   6   4   0   3   0
   6   5   3   6   2   1   5   3
 
Maps resulting from layout #2 are:
 
  16  16  24  18  18  20  12  11
   6   6  24  10  10  20  12  11
   8  15  15   3   3  17  14  14
   8   5   5   2  19  17  28  26
  23   1  13   2  19   7  28  26
  23   1  13  25  25   7   4   4
  27  27  22  22   9   9  21  21
 
  16  16  24  18  18  20  12  11
   6   6  24  10  10  20  12  11
   8  15  15   3   3  17  14  14
   8   5   5   2  19  17  28  26
  23   1  13   2  19   7  28  26
  23   1  13  25  25   7  21   4
  27  27  22  22   9   9  21   4
 
There are 2 solution(s) for layout #2.
 
题解:非常暴力的搜索。想了半天剪枝怎么剪,最后发现不用剪......(想想也对,可能的情况确实比较少)
 
 #include <bits/stdc++.h>

 using namespace std;

 const int maxn = ;
const int n = ,m = ; int table[maxn][maxn];
int gra[maxn][maxn],ans[maxn][maxn];
int _count;
bool vis[maxn][maxn];
bool used[maxn<<];
int dx[] = {,};
int dy[] = {,}; void init(){
memset(table,,sizeof(table));
memset(vis,false,sizeof(vis));
memset(used,false,sizeof(used));
int i = ,j = ,cnt = ;
for(int len = ;len >= ;len--){
for(int p = j;p < ;p++){
table[i][p] = table[p][i] = cnt++;
}
i++,j++;
}
} void dfs(int x,int y,int cnt){
if(cnt == ){
_count++;
for(int i = ;i < n;i++){
for(int j = ;j < m;j++){
printf("%4d",ans[i][j]);
}
printf("\n");
}
printf("\n");
return;
} if(y == m) x++,y = ;
if(vis[x][y]) dfs(x,y+,cnt);
else{
for(int i = ;i < ;i++){
int xx = x+dx[i],yy = y+dy[i];
if(xx>=n || yy>=m) continue;
if(vis[xx][yy] || used[table[gra[x][y]][gra[xx][yy]]]) continue; ans[x][y] = ans[xx][yy] = table[gra[x][y]][gra[xx][yy]];
vis[x][y] = vis[xx][yy] = used[table[gra[x][y]][gra[xx][yy]]] = true;
dfs(x,y+,cnt+);
vis[x][y] = vis[xx][yy] = used[table[gra[x][y]][gra[xx][yy]]] = false;
}
}
} int main()
{
#ifdef GEH
freopen("input.txt","r",stdin);
#endif
init();
int iCase = ;
while(~scanf("%d",&gra[][])){
for(int i = ;i < n;i++){
for(int j = ;j < m;j++){
if(i== && j==) continue;
scanf("%d",&gra[i][j]);
}
} if(iCase) printf("\n\n\n");
printf("Layout #%d:\n\n",++iCase);
for(int i = ;i < n;i++){
for(int j = ;j < m;j++){
printf("%4d",gra[i][j]);
}
printf("\n");
}
printf("\n");
printf("Maps resulting from layout #%d are:\n\n",iCase);
_count = ;
dfs(,,);
printf("There are %d solution(s) for layout #%d.\n",_count,iCase);
}
return ;
}
 

UVA211-The Domino Effect(dfs)的更多相关文章

  1. CF 405B Domino Effect(想法题)

    题目链接: 传送门 Domino Effect time limit per test:1 second     memory limit per test:256 megabytes Descrip ...

  2. [ACM_图论] Domino Effect (POJ1135 Dijkstra算法 SSSP 单源最短路算法 中等 模板)

    Description Did you know that you can use domino bones for other things besides playing Dominoes? Ta ...

  3. POJ 1135 Domino Effect(Dijkstra)

    点我看题目 题意 : 一个新的多米诺骨牌游戏,就是这个多米诺骨中有许多关键牌,他们之间由一行普通的骨牌相连接,当一张关键牌倒下的时候,连接这个关键牌的每一行都会倒下,当倒下的行到达没有倒下的关键牌时, ...

  4. POJ 1135 Domino Effect (spfa + 枚举)- from lanshui_Yang

    Description Did you know that you can use domino bones for other things besides playing Dominoes? Ta ...

  5. POJ 1135 Domino Effect (Dijkstra 最短路)

    Domino Effect Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9335   Accepted: 2325 Des ...

  6. POJ 1135.Domino Effect Dijkastra算法

    Domino Effect Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10325   Accepted: 2560 De ...

  7. zoj 1298 Domino Effect (最短路径)

    Domino Effect Time Limit: 2 Seconds      Memory Limit: 65536 KB Did you know that you can use domino ...

  8. TOJ 1883 Domino Effect

    Description Did you know that you can use domino bones for other things besides playing Dominoes? Ta ...

  9. [POJ] 1135 Domino Effect

    Domino Effect Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 12147 Accepted: 3046 Descri ...

随机推荐

  1. 多线程(二)ThreadLocal

    ThreadLocal public class Demo extends Thread{ static int i = 0; public Integer getNext(){ i++; retur ...

  2. js作用域面试题大全

    什么是作用域:浏览器给js的生存环境叫作用域. 什么是变量提升: Js代码执行前,浏览器会给一个全局作用域window Window分两个模块一个是存储模块一个是执行模块 存储模块找到所有的var和f ...

  3. What does operator “dot” (.) mean?

    Question: Given the code : A = [1 2 3; 3 2 1] B = A.^2 The output : B = 1 4 9 9 4 1 But if I do this ...

  4. nodejs+expressjs+ws实现了websocket即时通讯,服务器和客户端互相通信

    nodejs代码 // 导入WebSocket模块: const WebSocket = require('ws'); // 引用Server类: const WebSocketServer = We ...

  5. JS中的柯里化(currying)

    何为Curry化/柯里化? curry化来源与数学家 Haskell Curry的名字 (编程语言 Haskell也是以他的名字命名). 柯里化通常也称部分求值,其含义是给函数分步传递参数,每次传递参 ...

  6. Web标准中xhtml规范的内容有哪些

    1.所有的标记都必须要有一个相应的结束标记 以前在HTML中,你可以打开许多标签,例如<p>和<li>而不一定写对应的</p>和</li>来关闭它们.但 ...

  7. js中判断空及获取当前服务的根路径

    function isValue(o) { return (this.isObject(o) || this.isString(o) || this.isNumber(o) || this.isBoo ...

  8. UoW中修改VIM的配色方案

    在WIN10中提供Bash on Ubuntu on Windows,即在win中提供一个Ubuntu子系统,可以使用bash.该系统中自带的VIM的配色方案colorscheme为默认的,不怎么好, ...

  9. C# 实现截图软件功能

    本文是利用C# 开发截图软件的小例子,以供学习分享使用. 思路: 截取屏幕图片. 获取要截取的范围,即左上角,右下角坐标 填充到PictureBox中. 笔触功能,荧光笔,矩形,橡皮擦,复制,保存功能 ...

  10. Android开发利器之Data Binding Compiler V2 —— 搭建Android MVVM完全体的基础

    原创声明: 该文章为原创文章,未经博主同意严禁转载. 前言: Android常用的架构有:MVC.MVP.MVVM,而MVVM是唯一一个官方提供支持组件的架构,我们可以通过Android lifecy ...