import tensorflow as tf
import numpy as np def add_layer(inputs, in_size, out_size, n_layer, activation_function=None):
# add one more layer and return the output of this layer
layer_name = 'layer%s' % n_layer
with tf.name_scope(layer_name):
with tf.name_scope('Jason_niu_weights'):
Weights = tf.Variable(tf.random_normal([in_size, out_size]), name='W')
tf.summary.histogram(layer_name + '/weights', Weights)
with tf.name_scope('Jason_niu_biases'):
biases = tf.Variable(tf.zeros([1, out_size]) + 0.1, name='b')
tf.summary.histogram(layer_name + '/biases', biases)
with tf.name_scope('Jason_niu_Wx_plus_b'):
Wx_plus_b = tf.add(tf.matmul(inputs, Weights), biases)
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b, )
tf.summary.histogram(layer_name + '/outputs', outputs)
return outputs # Make up some real data
x_data = np.linspace(-1, 1, 300)[:, np.newaxis]
noise = np.random.normal(0, 0.05, x_data.shape)
y_data = np.square(x_data) - 0.5 + noise # define placeholder for inputs to network
with tf.name_scope('Jason_niu_inputs'):
xs = tf.placeholder(tf.float32, [None, 1], name='x_input')
ys = tf.placeholder(tf.float32, [None, 1], name='y_input') # add hidden layer
l1 = add_layer(xs, 1, 10, n_layer=1, activation_function=tf.nn.relu)
# add output layer
prediction = add_layer(l1, 10, 1, n_layer=2, activation_function=None) # the error between prediciton and real data
with tf.name_scope('Jason_niu_loss'):
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),
reduction_indices=[1]))
tf.summary.scalar('Jason_niu_loss', loss) with tf.name_scope('Jason_niu_train'):
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss) sess = tf.Session()
merged = tf.summary.merge_all()
writer = tf.summary.FileWriter("logs3/", sess.graph)
# important step
sess.run(tf.global_variables_initializer()) for i in range(1000):
sess.run(train_step, feed_dict={xs: x_data, ys: y_data})
if i % 50 == 0:
result = sess.run(merged,feed_dict={xs: x_data, ys: y_data})
writer.add_summary(result, i)

TF:TF之Tensorboard实践:将神经网络Tensorboard形式得到events.out.tfevents文件+dos内运行该文件本地服务器输出到网页可视化—Jason niu的更多相关文章

  1. TF之NN:matplotlib动态演示深度学习之tensorflow将神经网络系统自动学习并优化修正并且将输出结果可视化—Jason niu

    import tensorflow as tf import numpy as np import matplotlib.pyplot as plt def add_layer(inputs, in_ ...

  2. Tensorflow BatchNormalization详解:2_使用tf.layers高级函数来构建神经网络

    Batch Normalization: 使用tf.layers高级函数来构建神经网络 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献 吴恩达deeplearningai课程 课程笔 ...

  3. TF之RNN:matplotlib动态演示之基于顺序的RNN回归案例实现高效学习逐步逼近余弦曲线—Jason niu

    import tensorflow as tf import numpy as np import matplotlib.pyplot as plt BATCH_START = 0 TIME_STEP ...

  4. [ 搭建Redis本地服务器实践系列二 ] :图解CentOS7配置Redis

    上一章 [ 搭建Redis本地服务器实践系列一 ] :图解CentOS7安装Redis 详细的介绍了Redis的安装步骤,那么只是安装完成,此时的Redis服务器还无法正常运作,我们需要对其进行一些配 ...

  5. [ 搭建Redis本地服务器实践系列一 ] :图解CentOS7安装Redis

    上一章 [ 搭建Redis本地服务器实践系列 ] :序言 作为开场白介绍了下为什么要写这个系列,从这个章节我们就开始真正的进入正题,开始搭建我们本地的Redis服务器.那么关于Redis的基本概念,什 ...

  6. [ 搭建Redis本地服务器实践系列 ] :序言

    说起来,是在一个气候适宜的下午,虽然临近下班,不过办公室里还是充满了忙碌的身影,不时的还会从办公区传来小伙伴们为了一个需求而激烈争论的声音,自从入了互联网这个行业,说实话,也就很少休息了,当然了也不全 ...

  7. [ 搭建Redis本地服务器实践系列三 ] :图解Redis客户端工具连接Redis服务器

    上一章 [ 搭建Redis本地服务器实践系列二 ] :图解CentOS7配置Redis  介绍了Redis的初始化脚本文件及启动配置文件,并图解如何以服务的形式来启动.终止Redis服务,可以说我们的 ...

  8. GA:GA优化BP神经网络的初始权值、阈值,从而增强BP神经网络的鲁棒性—Jason niu

    global p global t global R % 输入神经元个数,此处是6个 global S1 % 隐层神经元个数,此处是10个 global S2 % 输出神经元个数,此处是4个 glob ...

  9. 实现手写数字识别(数据集50000张图片)比较3种算法神经网络、灰度平均值、SVM各自的准确率—Jason niu

    对手写数据集50000张图片实现阿拉伯数字0~9识别,并且对结果进行分析准确率, 手写数字数据集下载:http://yann.lecun.com/exdb/mnist/ 首先,利用图片本身的属性,图片 ...

随机推荐

  1. iOS项目国际化详解

    现在的开发中难免会遇到项目国际化处理,下面把我理解到的国际化相关的知识点进行总结归纳 1 首先是对项目名称,系统性的文字进行名字化,比如程序名字 1,先给项目添加语言 2 添加InfoPlist.st ...

  2. day10 函数2

    为什么需要函数? 先使用目前的知识点实现一个需求: """ 三个功能   1.登录   2.购物车   3.收藏夹       收藏夹和 购物车 需要先登录才能使用!   ...

  3. django rest framework(4)

    目录 一.分页 二.视图 三.路由 四.渲染器 一.分页 试问如果当数据量特别大的时候,你是怎么解决分页的? 方式a.记录当前访问页数的数据id 方式b.最多显示120页等 方式c.只显示上一页,下一 ...

  4. Python中什么是深拷贝和浅拷贝且有什么区别

    浅拷贝: >>> a = [1, 2, 3] >>> b = a >>> a [1, 2, 3] >>> b [1, 2, 3] ...

  5. Python中的xxx == xx是否等价于xxx is xxx

    先上代码: >>> a = 1 >>> b = 1 >>> a is b True >>> a == b True what? ...

  6. Loadrunner 接口依赖测试

    Action() { //利用关联获取第一个GET请求的返回XXX字段的值,并存储到response_XXX变量中. web_reg_save_param_ex( "ParamName=re ...

  7. MAC 调用GCC 提示xcrun: error: invalid active developer path

    xcrun: error: invalid active developer path (/Library/Developer/CommandLineTools), missing xcrun at: ...

  8. 提取Word里的文本内容 C#

    using DocumentFormat.OpenXml.Packaging; public static string TextFromWord(string path) { const strin ...

  9. 类和JSP关系

    404的原因.除了路径问题,还有文件放置位置.比如如果文件在web-inf下面.浏览器是访问不到的

  10. Oracle查询CLOB字段类型的内容

    select dbms_lob.substr(lo.ldtext) as text from longdescription lo