import tensorflow as tf
import numpy as np def add_layer(inputs, in_size, out_size, n_layer, activation_function=None):
# add one more layer and return the output of this layer
layer_name = 'layer%s' % n_layer
with tf.name_scope(layer_name):
with tf.name_scope('Jason_niu_weights'):
Weights = tf.Variable(tf.random_normal([in_size, out_size]), name='W')
tf.summary.histogram(layer_name + '/weights', Weights)
with tf.name_scope('Jason_niu_biases'):
biases = tf.Variable(tf.zeros([1, out_size]) + 0.1, name='b')
tf.summary.histogram(layer_name + '/biases', biases)
with tf.name_scope('Jason_niu_Wx_plus_b'):
Wx_plus_b = tf.add(tf.matmul(inputs, Weights), biases)
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b, )
tf.summary.histogram(layer_name + '/outputs', outputs)
return outputs # Make up some real data
x_data = np.linspace(-1, 1, 300)[:, np.newaxis]
noise = np.random.normal(0, 0.05, x_data.shape)
y_data = np.square(x_data) - 0.5 + noise # define placeholder for inputs to network
with tf.name_scope('Jason_niu_inputs'):
xs = tf.placeholder(tf.float32, [None, 1], name='x_input')
ys = tf.placeholder(tf.float32, [None, 1], name='y_input') # add hidden layer
l1 = add_layer(xs, 1, 10, n_layer=1, activation_function=tf.nn.relu)
# add output layer
prediction = add_layer(l1, 10, 1, n_layer=2, activation_function=None) # the error between prediciton and real data
with tf.name_scope('Jason_niu_loss'):
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),
reduction_indices=[1]))
tf.summary.scalar('Jason_niu_loss', loss) with tf.name_scope('Jason_niu_train'):
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss) sess = tf.Session()
merged = tf.summary.merge_all()
writer = tf.summary.FileWriter("logs3/", sess.graph)
# important step
sess.run(tf.global_variables_initializer()) for i in range(1000):
sess.run(train_step, feed_dict={xs: x_data, ys: y_data})
if i % 50 == 0:
result = sess.run(merged,feed_dict={xs: x_data, ys: y_data})
writer.add_summary(result, i)

TF:TF之Tensorboard实践:将神经网络Tensorboard形式得到events.out.tfevents文件+dos内运行该文件本地服务器输出到网页可视化—Jason niu的更多相关文章

  1. TF之NN:matplotlib动态演示深度学习之tensorflow将神经网络系统自动学习并优化修正并且将输出结果可视化—Jason niu

    import tensorflow as tf import numpy as np import matplotlib.pyplot as plt def add_layer(inputs, in_ ...

  2. Tensorflow BatchNormalization详解:2_使用tf.layers高级函数来构建神经网络

    Batch Normalization: 使用tf.layers高级函数来构建神经网络 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献 吴恩达deeplearningai课程 课程笔 ...

  3. TF之RNN:matplotlib动态演示之基于顺序的RNN回归案例实现高效学习逐步逼近余弦曲线—Jason niu

    import tensorflow as tf import numpy as np import matplotlib.pyplot as plt BATCH_START = 0 TIME_STEP ...

  4. [ 搭建Redis本地服务器实践系列二 ] :图解CentOS7配置Redis

    上一章 [ 搭建Redis本地服务器实践系列一 ] :图解CentOS7安装Redis 详细的介绍了Redis的安装步骤,那么只是安装完成,此时的Redis服务器还无法正常运作,我们需要对其进行一些配 ...

  5. [ 搭建Redis本地服务器实践系列一 ] :图解CentOS7安装Redis

    上一章 [ 搭建Redis本地服务器实践系列 ] :序言 作为开场白介绍了下为什么要写这个系列,从这个章节我们就开始真正的进入正题,开始搭建我们本地的Redis服务器.那么关于Redis的基本概念,什 ...

  6. [ 搭建Redis本地服务器实践系列 ] :序言

    说起来,是在一个气候适宜的下午,虽然临近下班,不过办公室里还是充满了忙碌的身影,不时的还会从办公区传来小伙伴们为了一个需求而激烈争论的声音,自从入了互联网这个行业,说实话,也就很少休息了,当然了也不全 ...

  7. [ 搭建Redis本地服务器实践系列三 ] :图解Redis客户端工具连接Redis服务器

    上一章 [ 搭建Redis本地服务器实践系列二 ] :图解CentOS7配置Redis  介绍了Redis的初始化脚本文件及启动配置文件,并图解如何以服务的形式来启动.终止Redis服务,可以说我们的 ...

  8. GA:GA优化BP神经网络的初始权值、阈值,从而增强BP神经网络的鲁棒性—Jason niu

    global p global t global R % 输入神经元个数,此处是6个 global S1 % 隐层神经元个数,此处是10个 global S2 % 输出神经元个数,此处是4个 glob ...

  9. 实现手写数字识别(数据集50000张图片)比较3种算法神经网络、灰度平均值、SVM各自的准确率—Jason niu

    对手写数据集50000张图片实现阿拉伯数字0~9识别,并且对结果进行分析准确率, 手写数字数据集下载:http://yann.lecun.com/exdb/mnist/ 首先,利用图片本身的属性,图片 ...

随机推荐

  1. 高级UI特效—用SVG码造一个精美的中国地图

    前言 来继续学习SVG,要想深入了解还是要多动手进行实战.关于svg基础可以去看一下我的上一篇文章<SVG前戏—让你的View多姿多彩>,今天就用SVG打造一个精美的UI效果. 正文 先上 ...

  2. STM32L476应用开发之四:触摸屏驱动与数据交互

    数据交互可以说是任何一台仪器都需要的功能.我们的便携式气体分析仪,需要人来操作和配置,所以触摸屏就是我们必然的一个选择.本次我们计划采用3.5寸显示屏,串口通讯. 1.硬件设计 前面我们实验了串行通讯 ...

  3. 机器学习之高斯混合模型及EM算法

    第一部分: 这篇讨论使用期望最大化算法(Expectation-Maximization)来进行密度估计(density estimation). 与k-means一样,给定的训练样本是,我们将隐含类 ...

  4. Java_解惑

    书名 ================================================================================================= ...

  5. Linux下Oracle 12c的卸载

    注:本文来源于:<Linux下Oracle 12c的卸载> 与Windows下Oracle的安装容易卸载麻烦相反,Linux下Oracle的安装麻烦下载简单. 1.关闭Oracle数据库 ...

  6. mysql 视图 触发器 事物 存储过程 函数 流程控制

    1.视图 *** 视图是有一条sql语句的查询结果构成的虚拟表 其不是物理存在的 使用方式与普通表相同 视图的作用1.简化sql语句的编写 2.限制可以查看的数据 可以使用权限来完成 权限某一个库 的 ...

  7. 《剑指offer》从上往下打印二叉树

    本题来自<剑指offer> 从上往下打印二叉树 题目: 从上往下打印出二叉树的每个节点,同层节点从左至右打印. 思路: 队列的思想. 先将根节点加入,当取该节点时候,依次将左右子树加入,直 ...

  8. cf441 f组合数。。单调指针

    e没学过做不出来.. 处理合法的区间很麻烦,但是处理非合法的区间很容易 答案就是所有的取法-不合法的区间 这题一定要双边界推进处理!!!! 一开始用单边界向右推进,结果后来发现错了,拿样例1就可以证明 ...

  9. hdu4003

    /*依赖背包的通常做法就是对于每个结点,先处理处其所有子节点的dp,然后对于当前结点进行分组背包dp即可 还是依赖背包问题,dp[i][j]表示结点i的子树用了j个机器人的搜索代价 边界条件,如果某个 ...

  10. IEDA序列化设置