题意

题目链接

Sol

这题想还是不难想的,就是写起来很麻烦,然后去看了一下loj的最短代码表示只能Orz

首先不难发现一条性质:能够选择的区间一定是不断收缩的,而且新的可选区间一定是旧区间的某个位置划分而来的。

比如\(A_{i-1} = x\),此时小于\(x\)的最大数为\(l_{i-1}\),大于\(x\)的最小数为\(r_{i-1}\),我在这之中选了一个\(A_i = t\),那么我们考虑\(A_{i+1}\)的时候。显然若\(t < x\),那么大于\(t\)的最小数为\(x\),小于\(t\)的最大数为\(l\),\(t>x\)同理。

然后就可以设\(f[i][l][r]\)表示\(i\)位置在\([l,r]\)内取值的方案数。转移的时候需要倒着转移。

直接记忆话搜索即可

复杂度\(O(nr^3)\)

#include<bits/stdc++.h>
#define Fin(x) freopen(#x".in", "r", stdin);
using namespace std;
const int MAXN = 50001, mod = 998244353;
template<typename A, typename B> inline bool chmax(A &x, B y) {return x < y ? x = y, 1 : 0;}
template<typename A, typename B> inline bool chmin(A &x, B y) {return x > y ? x = y, 1 : 0;}
template<typename A, typename B> inline A mul(A x, B y) {return 1ll * x * y % mod;}
template<typename A, typename B> inline void add2(A &x, B y) {x = x + y >= mod ? x + y - mod : x + y;}
template<typename A, typename B> inline int add(A x, B y) {return x + y >= mod ? x + y - mod : x + y;}
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N, a[51], f[51][152][152];
int dfs(int x, int l, int r) {
if(x > N)
return 1;
int &res = f[x][l][r];
if(~res) return res; res = 0;
for(int i = max(1, l); i <= min(a[x], r); i++) {
if(i == l || i == r) add2(res, dfs(x + 1, i, i));
else add2(res, add(add(dfs(x + 1, l, i), dfs(x + 1, i, r)), -dfs(x + 1, i, i) + mod));
}
return res;
}
signed main() {
memset(f, -1, sizeof(f));
N = read();
int mx = 0;
for(int i = 1; i <= N; i++) a[i] = read(), chmax(mx, a[i]);
cout << dfs(1, 0, mx + 1);
return 0;
}

洛谷P4063 [JXOI2017]数列(dp)的更多相关文章

  1. [P4063][JXOI2017]数列(DP)

    题目描述 九条可怜手上有一个长度为 n 的整数数列 ri,她现在想要构造一个长度为 n 的,满足如下条件的整数数列 A: • 1 ≤ Ai ≤ ri. • 对于任意 3 ≤ i ≤ n,令 R 为 A ...

  2. 洛谷P1108 低价购买[DP | LIS方案数]

    题目描述 “低价购买”这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:“低价购买:再低价购买”.每次你购买一支股票,你必须用低于你上次购买它的价格购买它 ...

  3. NOIP2017提高组Day2T2 宝藏 洛谷P3959 状压dp

    原文链接https://www.cnblogs.com/zhouzhendong/p/9261079.html 题目传送门 - 洛谷P3959 题目传送门 - Vijos P2032 题意 给定一个 ...

  4. 洛谷P1244 青蛙过河 DP/思路

    又是一道奇奇怪怪的DP(其实是思路题). 原文戳>>https://www.luogu.org/problem/show?pid=1244<< 这题的意思给的挺模糊,需要一定的 ...

  5. 洛谷P3928 Sequence2(dp,线段树)

    题目链接: 洛谷 题目大意在描述底下有.此处不赘述. 明显是个类似于LIS的dp. 令 $dp[i][j]$ 表示: $j=1$ 时表示已经处理了 $i$ 个数,上一个选的数来自序列 $A[0]$ 的 ...

  6. 洛谷P1140 相似基因 (DP)

    洛谷P1140 相似基因 题目背景 大家都知道,基因可以看作一个碱基对序列.它包含了44种核苷酸,简记作A,C,G,TA,C,G,T.生物学家正致力于寻找人类基因的功能,以利用于诊断疾病和发明药物. ...

  7. [洛谷P3228] [HNOI2013]数列

    洛谷题目链接:[HNOI2013]数列 题目描述 小T最近在学着买股票,他得到内部消息:F公司的股票将会疯涨.股票每天的价格已知是正整数,并且由于客观上的原因,最多只能为N.在疯涨的K天中小T观察到: ...

  8. 洛谷P2224 [HNOI2001] 产品加工 [DP补完计划,背包]

    题目传送门 产品加工 题目描述 某加工厂有A.B两台机器,来加工的产品可以由其中任何一台机器完成,或者两台机器共同完成.由于受到机器性能和产品特性的限制,不同的机器加工同一产品所需的时间会不同,若同时 ...

  9. 洛谷1417 烹调方案 dp 贪心

    洛谷 1417 dp 传送门 挺有趣的一道dp题目,看上去接近于0/1背包,但是考虑到取每个点时间不同会对最后结果产生影响,因此需要进行预处理 对于物品x和物品y,当时间为p时,先加x后加y的收益为 ...

随机推荐

  1. 【Windows】Git自动拉取

    原文:https://blog.csdn.net/qq_38375394/article/details/80093003 bat脚本.windows的schtasks,也就是类似于linux的cro ...

  2. JSTL 和 EL

    EL表达式   Expression Language 语法${作用域中的值} 使用EL表达式时,需要在page标签中写上isELIgnored="false",否则EL表达式不生 ...

  3. ionic3 实现扫码功能

    ionic3 通过插件phonegap-plugin-barcodescanner,调用机器硬件摄像头实现扫码功能. 首先当然先了解下 phonegap-plugin-barcodescanner,这 ...

  4. LINUX负载均衡LVS-NAT搭建

    1.搭建前的规划工作 这里从lvs官方网站找了一个nat模型的图,如下: 我这里使用虚拟机模拟出了4台rhel6机器.一台服务器作为lvs调度器(40网段使用的都是仅主机模式,168网段使用桥接模式) ...

  5. 网络编程第三讲UDP编写

    网络编程第三讲UDP编写 一丶UDP简介 UDP是面向无连接的.就是说数据传输会丢掉.网络延时比较大的情况下.会早上丢包.例如视频通话.就是UDP UDP不需要建立建立. 下面有UDP编写流程图 下图 ...

  6. spring springmvc mybatis maven 项目整合示例-导航页面

    spring原理 实践解析-简单的helloworld spring原理案例-基本项目搭建 01 spring framework 下载 官网下载spring jar包 spring原理案例-基本项目 ...

  7. 里氏替换原则(LSP)

    替换原则由MIT计算机科学实验室的Liskov女士在1987年的OOPSLA大会上的一篇文章中提出,主要阐述有关继承的一些原则,故称里氏替换原则. 2002年,Robert C.Martin出版了一本 ...

  8. 【ASP.NET MVC系列】浅谈ASP.NET MVC 控制器

    ASP.NET MVC系列文章 [01]浅谈Google Chrome浏览器(理论篇) [02]浅谈Google Chrome浏览器(操作篇)(上) [03]浅谈Google Chrome浏览器(操作 ...

  9. MySQL中间件之ProxySQL(14):ProxySQL+PXC

    返回ProxySQL系列文章:http://www.cnblogs.com/f-ck-need-u/p/7586194.html 1.ProxySQL+PXC 本文演示ProxySQL代理PXC(Pe ...

  10. 伪指令 ENTRY 与 END

    ENTRY ENTRY 是程序入口伪指令.在一个完整的汇编程序中至少有一个 ENTRY,编译程序在编译连接时依据程序入口进行连接.在只有一个入口时,编译程序会把这个入口的地址定义为系统复位后的程序起始 ...