There is a kind of balanced binary search tree named red-black tree in the data structure. It has the following 5 properties:

  • (1) Every node is either red or black.
  • (2) The root is black.
  • (3) Every leaf (NULL) is black.
  • (4) If a node is red, then both its children are black.
  • (5) For each node, all simple paths from the node to descendant leaves contain the same number of black nodes.

For example, the tree in Figure 1 is a red-black tree, while the ones in Figure 2 and 3 are not.

Figure 1 Figure 2 Figure 3

For each given binary search tree, you are supposed to tell if it is a legal red-black tree.

Input Specification:

Each input file contains several test cases. The first line gives a positive integer K (≤30) which is the total number of cases. For each case, the first line gives a positive integer N (≤30), the total number of nodes in the binary tree. The second line gives the preorder traversal sequence of the tree. While all the keys in a tree are positive integers, we use negative signs to represent red nodes. All the numbers in a line are separated by a space. The sample input cases correspond to the trees shown in Figure 1, 2 and 3.

Output Specification:

For each test case, print in a line "Yes" if the given tree is a red-black tree, or "No" if not.

Sample Input:

3
9
7 -2 1 5 -4 -11 8 14 -15
9
11 -2 1 -7 5 -4 8 14 -15
8
10 -7 5 -6 8 15 -11 17

Sample Output:

Yes
No
No
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<queue>
using namespace std;
bool cmp(int a, int b){
return abs(a) < abs(b);
}
int K, N;
typedef struct NODE{
struct NODE *lchild, *rchild;
int data;
}node;
void insert(node* &root, int data){
if(root == NULL){
root = new node;
root->lchild = NULL;
root->rchild = NULL;
root->data = data;
return;
}
if(abs(data) < abs(root->data))
insert(root->lchild, data);
else insert(root->rchild, data);
}
int cnt, isEqu;
void preOrder(node* root, int dp){
if(root == NULL){
dp++;
if(cnt == -){
cnt = dp;
}else{
if(cnt != dp)
isEqu = ;
}
return;
}
if(root->data > )
dp++;
preOrder(root->lchild, dp);
preOrder(root->rchild, dp);
}
int exam(node* root){
if(root->data < ) //负数为红
return ;
queue<node*> Q;
Q.push(root);
int tag = ;
while(Q.empty() == false){
node* temp = Q.front();
if(temp->data < ){
if(temp->lchild != NULL && temp->lchild->data < || temp->rchild != NULL && temp->rchild->data < ){
tag = ;
break;
}
}
Q.pop();
cnt = -, isEqu = ;
preOrder(temp, );
if(isEqu == ){
tag = ;
break;
}
if(temp->lchild != NULL)
Q.push(temp->lchild);
if(temp->rchild != NULL)
Q.push(temp->rchild);
}
return tag;
}
int main(){
scanf("%d", &K);
for(int i = ; i < K; i++){
scanf("%d", &N);
node* root = NULL;
for(int j = ; j < N; j++){
int temp;
scanf("%d", &temp);
insert(root, temp);
}
if(root == NULL)
printf("Yes\n");
else if(exam(root) == )
printf("Yes\n");
else printf("No\n");
}
cin >> N;
return ;
}

总结:

1、题意:给出一个平衡二叉搜索树的前序序列,给出红黑树的定义,检验该平衡二叉搜索树是否是红黑树。

2、给出了平衡二叉搜索树的前序序列,就可以仅仅根据前序序列建立原树,再按部就班进行检验。检验可以分别针对红黑树的要求逐条检验,首先看根。然后按照层序的顺序,对每一个节点做如下检验:1)若它是红的,检验它的左右孩子。 2)用DFS,遍历从该节点开始到叶节点(空节点)的所有路径,统计每个路径分别的黑节点总数。

3、关于建立原树,有两种办法。一是,由于搜索树的中序是从小到大的有序序列,可以先将所有节点排序得到中序序列。再按照已知前序和中序的方法,建立二叉树。二是,由于有序二叉树的先序序列的意义:根在前子树在后,且小于根的节点在左,大于的在右。所以可以直接把先序序列当作有序二叉树的插入的顺序,按顺序插入节点,得到原树。注意已知序列是有序二叉树的先序,则可以把它当作插入顺序。但已知插入顺序,这个插入顺序却不一定是先序。

A1135. Is It A Red-Black Tree的更多相关文章

  1. PAT A1135 Is It A Red Black Tree

    判断一棵树是否是红黑树,按题给条件建树,dfs判断即可~ #include<bits/stdc++.h> using namespace std; ; struct node { int ...

  2. [转载] 红黑树(Red Black Tree)- 对于 JDK TreeMap的实现

    转载自http://blog.csdn.net/yangjun2/article/details/6542321 介绍另一种平衡二叉树:红黑树(Red Black Tree),红黑树由Rudolf B ...

  3. Red–black tree ---reference wiki

    source address:http://en.wikipedia.org/wiki/Red%E2%80%93black_tree A red–black tree is a type of sel ...

  4. Red Black Tree 红黑树 AVL trees 2-3 trees 2-3-4 trees B-trees Red-black trees Balanced search tree 平衡搜索树

    小结: 1.红黑树:典型的用途是实现关联数组 2.旋转 当我们在对红黑树进行插入和删除等操作时,对树做了修改,那么可能会违背红黑树的性质.为了保持红黑树的性质,我们可以通过对树进行旋转,即修改树中某些 ...

  5. CF1208H Red Blue Tree

    CF1208H Red Blue Tree 原本应该放在这里但是这题过于毒瘤..单独开了篇blog 首先考虑如果 $ k $ 无限小,那么显然整个树都是蓝色的.随着 $ k $ 逐渐增大,每个点都会有 ...

  6. 2018 ICPC青岛网络赛 B. Red Black Tree(倍增lca好题)

    BaoBao has just found a rooted tree with n vertices and (n-1) weighted edges in his backyard. Among ...

  7. 计蒜客 Red Black Tree(树形DP)

    You are given a rooted tree with n nodes. The nodes are numbered 1..n. The root is node 1, and m of ...

  8. Red Black Tree(红黑树)

    (修改于 2018-05-06 15:53:22 还差删除维护操作.层序遍历没完成.维护操作没完成不想写层序遍历怎么办...) 今天下午完成了红黑树的插入的维护操作,但删除的维护操作还没有解决,删除的 ...

  9. ZOJ - 4048 Red Black Tree (LCA+贪心) The 2018 ACM-ICPC Asia Qingdao Regional Contest, Online

    题意:一棵树上有m个红色结点,树的边有权值.q次查询,每次给出k个点,每次查询有且只有一次机会将n个点中任意一个点染红,令k个点中距离红色祖先距离最大的那个点的距离最小化.q次查询相互独立. 分析:数 ...

  10. Red Black Tree java.util.TreeSet

    https://docs.oracle.com/javase/9/docs/api/java/util/SortedMap.html public interface SortedMap<K,V ...

随机推荐

  1. <转>Python中的新式/经典类的查找方式

    在学习到深度和广度的时候,懵了很久.后来看到这篇文章,恍然大悟.写的很好.特意转过来. 经典类: 只要有父类, 就会沿着一直找, 即使已经找过了~ 新式类: 在类继承的多个类拥有共同父类的情况下, 会 ...

  2. JS 将值插入数组中

    使用 push 方法 1.var arr = [1,2,3] arr.push(数值) 或者 arr.push({xxx:数值}) 2.输出数组中的最后一个 console.log(arr.[arr. ...

  3. php的amqp扩展 安装(windows) rabbitmq学习篇

    因为RabbitMQ是由erlang语言实现的,所以先要安装erlang环境erlang 下载安装 http://www.erlang.org/download.htmlrabbitmq 下载安装 h ...

  4. 思维导图,UML图,程序流程图制作从入门到精通

    工具: https://www.processon.com/ 第一 用例图 第二 时序图 第三 流程图

  5. Python2基础

    1.python 3.python函数 python的函数定义: 以def关键字定义一个函数: 参数放在小括号里面: 必须有return语句: 关键字参数: 即调用函数时传参顺序可以人为指定 默认参数 ...

  6. python web需要了解哪些

    1. socket.tcp/ip.http(cookie.session.token).https.ssl 2. wsgi:https://www.python.org/dev/peps/pep-33 ...

  7. UVA 11988 Beiju Text

    https://vjudge.net/problem/UVA-11988 题目 你有一个破损的键盘.键盘上所有的键都可以正常工作,但有时候Home键或者End键会自动按下.你并不知道键盘存在这一问题, ...

  8. Hibernate中的Entity类之间的继承关系之一MappedSuperclass

    在hibernate中,Entity类可以继承Entity类或非Entity类.但是,关系数据库表之间不存在继承的关系.那么在Entity类之间的继承关系,在数据库表中如何表示呢? Hibernate ...

  9. Java中的CopyOnWrite

    CopyOnWrite简称COW,是一种程序设计的一种优化的策略方法,他开始的思想就是大家一起共享一件东西或商品,当一个人想要改这个事物原有的状态时,会重新复制一份出去,然后再新的事物上面改他所需要的 ...

  10. AHOI(十二省联考)2019 退役记

    我也想退役失败.jpg Day 0 我才知道联考原来是4.5h? 下午居然还有讲题,感觉变得正规多了. 试机敲了LCT,NTT,SA,加起来花了大概40min,基本1A,感觉海星.键盘似乎有点过于灵敏 ...