通常我们使用的最小二乘都需要预先设定一个模型,然后通过最小二乘方法解出模型的系数。

而大多数情况是我们是不知道这个模型的,比如这篇博客中z=ax^2+by^2+cxy+dx+ey+f 这样的模型。

局部加权线性最小二乘就不需要我们预先知道待求解的模型,因为该方法是基于多个线性函数的叠加,最终只用到了线性模型。

计算线性模型时引入了一个加权函数:

来给当前预测数据分配权重,分配机制是:给距离近的点更高的权重,给距离远的点更低的权重。

公式中的k类似与高斯函数中的sigma。

当sigma变大时,函数变得矮胖,计算局部线性函数时更多的使用全局数据;

当sigma变小时,函数变得瘦高,计算局部线性函数时更多的使用局部数据。

代码如下:

clear all;
close all;
clc; x=(:0.1:)';
y=x.^+x+ +rand(length(x),)*;
plot(x,y,'.') sigma=0.1; %设置局部窗口,越大越使用全局数据,越小越使用局部数据
W=zeros(length(x));
C=[];
for i=:length(x)
for j=:length(x)
W(j,j)=exp(-((x(i)-x(j))^)/(*sigma^)); %权重矩阵
end XX=[x ones(length(x),)];
YY=y;
C=[C inv(XX'*W*XX)*XX'*W*YY]; %加权最小二乘,计算求得局部线性函数的系数 end re=diag(XX*C);
hold on;
plot(x,re);

结果如下:

可以看出,红色的局部线性函数最终拟合出了全局的数据。

不过该方法既然不需要知道模型,那我们如何预测未来的数据结果呢?

matlab练习程序(局部加权线性回归)的更多相关文章

  1. Locally weighted linear regression(局部加权线性回归)

    (整理自AndrewNG的课件,转载请注明.整理者:华科小涛@http://www.cnblogs.com/hust-ghtao/) 前面几篇博客主要介绍了线性回归的学习算法,那么它有什么不足的地方么 ...

  2. Locally Weighted Linear Regression 局部加权线性回归-R实现

      局部加权线性回归  [转载时请注明来源]:http://www.cnblogs.com/runner-ljt/ Ljt 作为一个初学者,水平有限,欢迎交流指正. 线性回归容易出现过拟合或欠拟合的问 ...

  3. 局部加权线性回归(Locally weighted linear regression)

    首先我们来看一个线性回归的问题,在下面的例子中,我们选取不同维度的特征来对我们的数据进行拟合. 对于上面三个图像做如下解释: 选取一个特征,来拟合数据,可以看出来拟合情况并不是很好,有些数据误差还是比 ...

  4. matlab练习程序(加权最小二乘)

    起本篇题目还是比较纠结的,原因是我本意打算寻找这样一个算法:在测量数据有比较大离群点时如何估计原始模型. 上一篇曲面拟合是假设测量数据基本符合均匀分布,没有特别大的离群点的情况下,我们使用最小二乘得到 ...

  5. 线性回归(最小二乘法、批量梯度下降法、随机梯度下降法、局部加权线性回归) C++

    We turn next to the task of finding a weight vector w which minimizes the chosen function E(w). Beca ...

  6. 局部加权回归、欠拟合、过拟合(Locally Weighted Linear Regression、Underfitting、Overfitting)

    欠拟合.过拟合 如下图中三个拟合模型.第一个是一个线性模型,对训练数据拟合不够好,损失函数取值较大.如图中第二个模型,如果我们在线性模型上加一个新特征项,拟合结果就会好一些.图中第三个是一个包含5阶多 ...

  7. Robust Locally Weighted Regression 鲁棒局部加权回归 -R实现

    鲁棒局部加权回归 [转载时请注明来源]:http://www.cnblogs.com/runner-ljt/ Ljt 作为一个初学者,水平有限,欢迎交流指正. 算法参考文献: (1) Robust L ...

  8. 局部加权回归、欠拟合、过拟合 - Andrew Ng机器学习公开课笔记1.3

    本文主要解说局部加权(线性)回归.在解说局部加权线性回归之前,先解说两个概念:欠拟合.过拟合.由此引出局部加权线性回归算法. 欠拟合.过拟合 例如以下图中三个拟合模型.第一个是一个线性模型.对训练数据 ...

  9. 线性回归 Linear regression(4) 局部加权回归

    这篇文章将介绍过拟合和欠拟合的概念,并且介绍局部加权回归算法. 过拟合和欠拟合 之前在线性回归中,我们总是将单独的x作为我们的特征,但其实我们可以考虑将,甚至x的更高次作为我们的特征,那么我们通过线性 ...

随机推荐

  1. pylot测试工具环境搭建

    1.下载Pylot:www.pylot.org/ 2. 安装Python 2.5 + (必须) 3. 安装wxPython(可选 - 用于GUI模式) 4. 安装numpy的(可选 - 用于报告以图表 ...

  2. VueJs(7)---计算属性和侦听器

    计算属性和侦听器 一. 概述 计算属性 模板内的表达式非常便利,但是设计它们的初衷是用于简单运算的.在模板中放入太多的逻辑会让模板过重且难以维护.例如: <div id="exampl ...

  3. Android布局中的空格以及占一个汉字宽度的空格,实现不同汉字字数对齐

    前言 在Android布局中进行使用到空格,以便实现文字的对齐.那么在Android中如何表示一个空格呢? 空格: (普通的英文半角空格但不换行) 窄空格:   (中文全角空格 (一个中文宽度))   ...

  4. 三方面搞定http协议之“请求方法”

    我所熟知的请求方法一共有六种: GET 请求指定的页面信息,并返回实体主体. POST 向指定资源提交数据进行处理请求(例如提交表单或者上传文件) PUT 从客户端向服务器传送的数据取代指定的文档的内 ...

  5. Android UI(三)SlidingMenu实现滑动菜单(详细 官方)

    Jeff Lee blog:   http://www.cnblogs.com/Alandre/  (泥沙砖瓦浆木匠),retain the url when reproduced ! Thanks ...

  6. Chapter 4 Invitations——5

    And that was the last contact I'd had with him, though he was there, a foot away from me, every day. ...

  7. Perl数据序列化和持久化(入门):Storable模块

    Perl提供了一个Storable模块,用来对数据结构进行序列化(serialization,Perl中称为冻结),也就是将数据结构保存为二进制数据. 序列化后的数据可以写入文件实现持久化,可以将持久 ...

  8. shell编程基础(二): shell脚本语法之分支语句和循环语句

    一.分支语句 1.条件测试:test [ 命令test或[可以测试一个条件是否成立,如果测试结果为真,则该命令的Exit Status为0,如果测试结果为假,则命令的Exit Status为1(注意与 ...

  9. Javascript 定时器调用传递参数的方法

    文章来源:  https://m.jb51.net/article/20880.htm 备注:先记下,以后整理: Javascript 定时器调用传递参数的方法,需要的朋友可以参考下. 无论是wind ...

  10. [转]OmniLayer / omnicore API 中文版

    本文转自:https://www.codetd.com/article/1692438 JSON-RPC API Omni Core是Bitcoin Core的一个分支,其Omni协议功能支持作为顶层 ...