Trident中的DRPC实现
一:介绍
1.说明
Storm里面引入DRPC主要是利用storm的实时计算能力来并行化CPU intensive的计算。DRPC的storm topology以函数的参数流作为输入,而把这些函数调用的返回值作为topology的输出流。
2.工作机制
Distributed RPC是由一个”DPRC Server”协调的(storm自带了一个实现)DRPC服务器协调
1) 接收一个RPC请求。
2) 发送请求到storm topology
3) 从storm topology接收结果。
4) 把结果发回给等待的客户端。从客户端的角度来看一个DRPC调用跟一个普通的RPC调用没有任何区别。
3.工作流程

客户端给DRPC服务器发送要执行的方法的名字,以及这个方法的参数。
实现了这个函数的topology使用 DRPCSpout 从DRPC服务器接收函数调用流。
每个函数调用被DRPC服务器标记了一个唯一的id。 这个topology然后计算结果,在topology的最后一个叫做 ReturnResults 的bolt会连接到DRPC服务器,并且把这个调用的结果发送给DRPC服务器(通过那个唯一的id标识)。DRPC服务器用那个唯一id来跟等待的客户端匹配上,唤醒这个客户端并且把结果发送给它。
二:本地DRPC
1.主驱动类
package com.jun.tridentWithHbase; import backtype.storm.Config;
import backtype.storm.LocalCluster;
import backtype.storm.LocalDRPC;
import backtype.storm.StormSubmitter;
import backtype.storm.generated.AlreadyAliveException;
import backtype.storm.generated.InvalidTopologyException;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Values;
import org.apache.storm.hbase.trident.state.HBaseMapState;
import storm.trident.Stream;
import storm.trident.TridentState;
import storm.trident.TridentTopology;
import storm.trident.operation.builtin.Count;
import storm.trident.operation.builtin.MapGet;
import storm.trident.operation.builtin.Sum;
import storm.trident.state.OpaqueValue;
import storm.trident.state.StateFactory;
import storm.trident.testing.FixedBatchSpout;
import storm.trident.testing.MemoryMapState; public class TridentDemo {
public static void main(String[] args) throws AlreadyAliveException, InvalidTopologyException {
TridentTopology tridentTopology=new TridentTopology();
//模拟数据
Fields field=new Fields("log","flag");
FixedBatchSpout spout=new FixedBatchSpout(field,5,
new Values("168.214.187.214 - - [1481953616092] \"GET /view.php HTTP/1.1\" 200 0 \"http://cn.bing.com/search?q=spark mllib\" \"Mozilla/5.0 (Windows NT 6.1; rv:2.0.1) Gecko/20100101 Firefox/4.0.1\" \"-\"","A"),
new Values("168.187.202.202 - - [1481953537038] \"GET /IBEIfeng.gif?order_id=1063&orderTime=1481953537038&memberId=4000012340500607&productInfos=10005-2099.48-B-1|10004-1886.62-A-2|10001-961.99-A-1&orderAmt=6834.70 HTTP/1.1\" 200 0 \"-\" \"Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.2;Tident/6.0)\" \"-\"","A"),
new Values("61.30.167.187 - - [1481953539039] \"GET /IBEIfeng.gif?order_id=1064&orderTime=1481953539039&memberId=4000930409959999&productInfos=10007-3329.13-B-1|10009-2607.71-B-1|10002-390.62-A-1|10006-411.00-B-2&orderAmt=7149.46 HTTP/1.1\" 200 0 \"-\" \"Mozilla/5.0 (Linux; Android 4.2.1; Galaxy Nexus Build/JOP40D) AppleWebKit/535.19 (KHTML, like Gecko) Chrome/18.0.1025.166 Mobile Safari/535.19\" \"-\"","A"),
new Values("30.29.132.190 - - [1481953544042] \"GET /IBEIfeng.gif?order_id=1065&orderTime=1481953544043&memberId=1234568970080798&productInfos=10005-2099.48-B-1|10001-3242.40-C-2|10006-411.00-B-1&orderAmt=8995.28 HTTP/1.1\" 200 0 \"-\" \"Mozilla/5.0 (iPhone; CPU iPhone OS 7_)_3 like Mac OS X) AppleWebKit/537.51.1 (KHTML, like Gecko) Version/7.0 Mobile/11B511 Safari/9537.53\" \"-\"","B"),
new Values("222.190.187.201 - - [1481953578068] \"GET /IBEIfeng.gif?order_id=1066&orderTime=1481953578068&memberId=3488586887970809&productInfos=10005-2099.48-B-1|10001-2774.16-C-2&orderAmt=7647.80 HTTP/1.1\" 200 0 \"-\" \"Mozilla/5.0 (Windows NT 6.1; rv:2.0.1) Gecko/20100101 Firefox/4.0.1\" \"-\"","B"),
new Values("72.202.43.53 - - [1481953579069] \"GET /IBEIfeng.gif?order_id=1067&orderTime=1481953579069&memberId=2084859896989877&productInfos=10007-3329.13-B-1|10001-961.99-A-2&orderAmt=5253.10 HTTP/1.1\" 200 0 \"-\" \"Mozilla/5.0 (Linux; Android 4.2.1; Galaxy Nexus Build/JOP40D) AppleWebKit/535.19 (KHTML, like Gecko) Chrome/18.0.1025.166 Mobile Safari/535.19\" \"-\"","B")
);
//多次循环
spout.setCycle(true);
//流处理
Stream stream=tridentTopology.newStream("orderAnalyse",spout)
//过滤
.each(new Fields("log"),new ValidLogFilter())
//解析
.each(new Fields("log"), new LogParserFunction(),new Fields("orderId","orderTime","orderAmtStr","memberId"))
//投影
.project(new Fields("orderId","orderTime","orderAmtStr","memberId"))
//时间解析
.each(new Fields("orderTime"),new DateTransFormerFunction(),new Fields("day","hour","minter"))
;
//分流
//1.基于minter统计订单数量,分组统计
TridentState state=stream.groupBy(new Fields("minter"))
//全局聚合,使用内存存储状态信息
.persistentAggregate(new MemoryMapState.Factory(),new Count(),new Fields("orderNumByMinter"));
// state.newValuesStream().each(new Fields("minter","orderNumByMinter"),new PrintFilter()); //2.另一个流,基于分钟的订单金额,局部聚合
Stream partitionStream=stream.each(new Fields("orderAmtStr"),new TransforAmtToDoubleFunction(),new Fields("orderAmt"))
.groupBy(new Fields("minter"))
//局部聚合
.chainedAgg() //聚合链
.partitionAggregate(new Fields("orderAmt"),new LocalSum(),new Fields("orderAmtSumOfLocal"))
.chainEnd(); //聚合链 //做一次全局聚合
TridentState partitionState=partitionStream.groupBy(new Fields("minter"))
//全局聚合
.persistentAggregate(new MemoryMapState.Factory(),new Fields("orderAmtSumOfLocal"),new Sum(),new Fields("totalOrderAmt"));
partitionState.newValuesStream().each(new Fields("minter","totalOrderAmt"),new PrintFilter()); //提交
Config config=new Config();
if(args==null || args.length<=0){
//应该是构建一个DRPC的服务器
LocalDRPC localDRPC=new LocalDRPC();
tridentTopology.newDRPCStream("orderDataServer",localDRPC)
//参数处理
.each(new Fields("args"),new RequestParamsParserFunction(),new Fields("date"))
//查询,重要的参数是上面的partitionState
.stateQuery(partitionState,new Fields("date"),new MapGet(),new Fields("totalAmtByMinter"))
//投影
.project(new Fields("date","totalAmtByMinter"));
//提交任务
LocalCluster localCluster=new LocalCluster();
localCluster.submitTopology("tridentDemo",config,tridentTopology.build());
//获取值
String jsonResult=localDRPC.execute("orderDataServer","201612171345 201612171345");
System.out.println("***"+jsonResult+"***"); }else {
config.setNumWorkers(2);
StormSubmitter.submitTopology(args[0],config,tridentTopology.build());
}
}
}
2.请求参数处理类
package com.jun.tridentWithHbase; import backtype.storm.tuple.Values;
import storm.trident.operation.Function;
import storm.trident.operation.TridentCollector;
import storm.trident.operation.TridentOperationContext;
import storm.trident.tuple.TridentTuple; import java.util.Map; public class RequestParamsParserFunction implements Function {
@Override
public void execute(TridentTuple tridentTuple, TridentCollector tridentCollector) {
String parameters=tridentTuple.getStringByField("args");
String[] params=parameters.split(" ");
for (String param:params){
tridentCollector.emit(new Values(param));
}
} @Override
public void prepare(Map map, TridentOperationContext tridentOperationContext) { } @Override
public void cleanup() { }
}
3.效果

三:集群模式的DRPC
1.主驱动类
config.setNumWorkers(2);
//集群上构建DRPC服务器
tridentTopology.newDRPCStream("orderDataServer")
//参数处理
.each(new Fields("args"),new RequestParamsParserFunction(),new Fields("date"))
//查询,重要的参数是上面的partitionState
.stateQuery(partitionState,new Fields("date"),new MapGet(),new Fields("totalAmtByMinter"))
//投影
.project(new Fields("date","totalAmtByMinter"));
StormSubmitter.submitTopology(args[0],config,tridentTopology.build());
2.配置DRPC服务和端口

3.启动storm
4.启动Drpc进程
在drpc.servers参数所指定的服务器上。
命令:nohup bin/storm drpc >>/dev/null 2>&1 &
查看端口是否正常打开:netstat -tlnup | grep 3772
5.将jar包提交到集群上
6.编写客户端
package com.jun.tridentWithKafka; import backtype.storm.generated.DRPCExecutionException;
import backtype.storm.utils.DRPCClient;
import org.apache.thrift7.TException; public class DrpcClientDemo {
public static void main(String[] args) {
DRPCClient drpcClient=new DRPCClient("linux-hadoop01.ibeifeng.com",3772);
try {
String jsonResult=drpcClient.execute("orderDataServer","201612171345 201612171345");
System.out.println("==="+jsonResult+"===");
} catch (TException e) {
e.printStackTrace();
} catch (DRPCExecutionException e) {
e.printStackTrace();
}
}
}
Trident中的DRPC实现的更多相关文章
- Trident中使用HBase进行状态管理
1.使用的类 2.使用HBaseMapState 3.使用状态管理 使用的状态管理还要看Spout StateFactory factory1 = HBaseMapState.opaque(opts1 ...
- Trident中的过滤与函数的区别
1.共同点 都需要实现storm.trident.operation.Function接口 2.不同点 其中函数有发射这个步骤. .each(new Fields("orderTime&qu ...
- Trident中的解析包含的函数操作与投影操作
一:函数操作 1.介绍 Tuple本身是不可变的 Function只是在原有的基础上追加新的tuple 2.说明 如果原来的字段是log,flag 新增之后的tuple可以访问这些字段,log,fla ...
- Trident中 FixedBatchSpout分析
FixedBatchSpout 继承自 IBatchSpout IBatchSpout 方法 public interface IBatchSpout extends Serializable { v ...
- storm trident 示例
Storm Trident的核心数据模型是一批一批被处理的“流”,“流”在集群的分区在集群的节点上,对“流”的操作也是并行的在每个分区上进行. Trident有五种对“流”的操作: 1. 不 ...
- [翻译][Trident] Trident state原理
原文地址:https://github.com/nathanmarz/storm/wiki/Trident-state ----------------------------- Trident在读写 ...
- storm的trident编程模型
storm的基本概念别人总结的, https://blog.csdn.net/pickinfo/article/details/50488226 编程模型最关键最难就是实现局部聚合的业务逻辑聚合类实现 ...
- 访问WEB-INF目录中的JSP文件
方法1:本来WEB-INF中的jsp就是无法通过地址栏访问的.所以安全.如果说你要访问这个文件夹中的jsp文件需要在项目的web.xml文件中去配置servlet格式差不多的配置就ok了.如下: 访问 ...
- Storm系列(十七)DRPC介绍
Storm版本0.9.5 在storm中DRPC服务应用于远程分布式计算,根据客户端提交的请求参数,而返回Storm计算的结果. DRPC服务启动流程(远程模式) 启动DRPC服务,启动命令:stor ...
随机推荐
- 45)django-分页实现
Django提供了一个新的类来帮助你管理分页数据,.它可以接收列表.元组或其它可迭代的对象. 一:常用方法 >>> from django.core.paginator import ...
- Android 代码混淆 混淆方案
本篇文章:自己在混淆的时候整理出比较全面的混淆方法,比较实用,自己走过的坑,淌出来的路.请大家不要再走回头路,可能只要我们代码加混淆,一点不对就会导致项目运行崩溃等后果,有许多人发现没有打包运行好好地 ...
- vue v-show绑定
在Vue中使用v-show指令来选择性的显示内容.它的属性值可以是布尔值.属性名称以及函数名称.如果使用函数来控制的话,无论函数内容如何运算判断,最终返回布尔值true或者false就可以了 < ...
- 基于AD5663的UV灯电压控制
在开发臭氧发生器的时,我们使用UV灯来实现臭氧的产生.而UV灯的强度决定了臭氧产生的浓度,UV灯的光强则与其控制电压密切相关.所以我们要控制产生的臭氧的浓度就需要调节其控制电压.我们选择了AD5663 ...
- Confluence 6 当前使用的数据库状态
进入 > 基本配置(General Configuration) > 问题检查和支持工具(Troubleshooting and support tools) 你就可以看到当前使用的数据 ...
- 使用应用链接来连接 Jira 和 Confluence 6
请参考 Linking to Another Application 页面中的内容来设置如何让 Confluence 连接到你的 Jira 应用,这个过程只需要一次就可以了. 如果你计划使用 Jira ...
- mysql服务器没有响应
第一步删除c:\windowns下面的my.ini(可以先改成其它的名字也行) 第二步打开对应安装目录下\mysql\bin\winmysqladmin.exe 输入用户名 和密码(也可以忽略此步) ...
- redis-4.0.8 配置文件解读
# Redis configuration file example.## Note that in order to read the configuration file, Redis must ...
- 【python】正则替换
正则替换可以使用函数 例如:替换字符串中所有#1.2.3.4#格式中的数字为0 import re def replace(x): def _replace(matched): m = matched ...
- 【python】del
参考:http://blog.csdn.net/love1code/article/details/47276683 del 删除的是变量,不是数据! if __name__=='__main__': ...