小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这n个牧场,他需要在某些牧场上面建立控制站,每个牧场上只能建立一个控制站,每个控制站控制的牧场是它所在的牧场一直到它西边第一个控制站的所有牧场(它西边第一个控制站所在的牧场不被控制)(如果它西边不存在控制站,那么它控制西边所有的牧场),每个牧场被控制都需要一定的花费(毕竟在控制站到牧场间修建道路是需要资源的嘛~),而且该花费等于它到控制它的控制站之间的牧场数目(不包括自身,但包括控制站所在牧场)乘上该牧场的放养量,在第i个牧场建立控制站的花费是ai,每个牧场i的放养量是bi,理所当然,小P需要总花费最小,但是小P的智商有点不够用了,所以这个最小总花费就由你来算出啦。

Solution

感觉自己学的有点死。

直接dp感觉比较困难,考虑正难则反,因为第n个点肯定是要放的,那么在之前放会使代价减小,所以我们先算出只在n个点放的代价,在倒着dp一下算减小的贡献。

方程,dp[i]=max{dp[j]+sum[i]*(j-i)-a[i]}.

整理可得sum[i]*j-(sum[i]*i+a[i]+dp[i])=-dp[j].

因为我们要求dp[i]最大值,所以我们要维护截距最小值,也就是一个下凸包。

emm,感觉自己维护了一个下凸包,连样例都过不了,纠结了一晚上。。。

因为我们的dp过程是倒着做的,所以我们的维护是反着的23333。

Code

#include<iostream>
#include<cstdio>
#define X(i) i
#define Y(i) -dp[i]
#define N 1000002
using namespace std;
typedef long long ll;
ll tot,sum[N],ans,dp[N];
int a[N],q[N],h,t,n,b[N];
inline double calc(int x,int y){
return (double)((double)Y(y)-Y(x))/((double)X(y)-X(x));
}
int main(){
scanf("%d",&n);
for(int i=;i<=n;++i)scanf("%d",&a[i]);
for(int i=;i<=n;++i)scanf("%d",&b[i]),sum[i]=b[i]+sum[i-];
for(int i=;i<n;++i)tot+=1ll*(n-i)*b[i];
tot+=a[n];
q[h=t=]=n;ans=;
for(int i=n-;i>=;--i){
while(h<t&&calc(q[h],q[h+])>sum[i])h++;
dp[i]=dp[q[h]]+(q[h]-i)*sum[i]-a[i];
while(h<t&&calc(q[t-],q[t])<calc(q[t],i))t--;
q[++t]=i;
ans=max(ans,dp[i]);
}
cout<<tot-ans;
return ;
}

bzoj3427小P的牧场(斜率优化dp)的更多相关文章

  1. 【bzoj3437】小P的牧场 斜率优化dp

    题目描述 背景 小P是个特么喜欢玩MC的孩纸... 描述 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这n个牧场,他需要在某些牧场上面建立控制站,每个 ...

  2. BZOJ3437:小P的牧场(斜率优化DP)

    Description 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这n个牧场,他需要在某些牧场上面建立控制站,每个牧场上只能建立一个控制站,每个控制 ...

  3. BZOJ 3437: 小P的牧场 斜率优化DP

    3437: 小P的牧场 Description 背景 小P是个特么喜欢玩MC的孩纸... 描述 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这n个牧场 ...

  4. bzoj3437小P的牧场 斜率优化dp

    3437: 小P的牧场 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1542  Solved: 849[Submit][Status][Discus ...

  5. 【BZOJ3437】小P的牧场 斜率优化

    [BZOJ3437]小P的牧场 Description 背景 小P是个特么喜欢玩MC的孩纸... 描述 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这 ...

  6. bzoj 3437: 小P的牧场 -- 斜率优化

    3437: 小P的牧场 Time Limit: 10 Sec  Memory Limit: 128 MB Description 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号), ...

  7. bzoj-4518 4518: [Sdoi2016]征途(斜率优化dp)

    题目链接: 4518: [Sdoi2016]征途 Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地 ...

  8. 蒟蒻关于斜率优化DP简单的总结

    斜率优化DP 题外话 考试的时候被这个玩意弄得瑟瑟发抖 大概是yybGG的Day4 小蒟蒻表示根本不会做..... 然后自己默默地搞了一下斜率优化 这里算是开始吗?? 其实我讲的会非常非常非常简单,, ...

  9. bzoj4518[Sdoi2016]征途 斜率优化dp

    4518: [Sdoi2016]征途 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1657  Solved: 915[Submit][Status] ...

随机推荐

  1. 练习MD5加密jar包编写

    简介 参数签名可以保证开发的者的信息被冒用后,信息不会被泄露和受损.原因在于接入者和提供者都会对每一次的接口访问进行签名和验证. 签名sign的方式是目前比较常用的方式. 第1步:接入者把需求访问的接 ...

  2. 2017年前小纪(有关http的一些缓存理论知识)

    position的top和bottom的区别:前者基准点定在top,后者基准点定在bottom. for-in 遍历属性的顺序不确定 手机端,line-height对光标大小非常有影响 有些css3属 ...

  3. 如何使用nodejs快速搭建本地服务器

    1.首先要安装好node,js 2.以下有安装包下载的链接:这里的安装包是.msi,如果要其他的,可以到菜鸟教程上去找 32 位安装包下载地址 : https://nodejs.org/dist/v4 ...

  4. Python 基础知识----流程控制

    判断语句 循环语句 嵌套

  5. java学习之—递归实现二分查找法

    /** * 递归实现二分查找法 * Create by Administrator * 2018/6/21 0021 * 上午 11:25 **/ class OrdArray{ private lo ...

  6. python学习笔记(11)--数据组织的维度

    数据的操作周期 存储  -- 表示 -- 操作 一维数据表示 如果数据有序,可以使用列表[]:如果数据没有顺序,可以使用集合{} 一维数组存储 存储方式一:空格分隔 ,使用一个或多个空格分隔进行分隔, ...

  7. python3 自动识图

    一.安装依赖库 pip install pytesseract pip install pillow 二.安装识图引擎tesseract-ocr https://pan.baidu.com/s/1Qa ...

  8. SQL Server 只安装客户端的方法

    只安装管理工具

  9. JAVA 变量 数据类型 运算符 知识小结

    ---------------------------------------------------> JAVA 变量 数据类型 运算符 知识小结 <------------------ ...

  10. orcale增加列脚本

    --编号declare v_cnt number; V_SQL VARCHAR2 (500) := '';begin select count(*) into v_cnt from dual wher ...