51Nod - 1228 序列求和 (自然数幂和+伯努利数)
https://vjudge.net/problem/51Nod-1228
Description
T(n) = n^k,S(n) = T(1) + T(2) + ...... T(n)。给出n和k,求S(n)。
Input
第1行:一个数T,表示后面用作输入测试的数的数量。(1 <= T <= 5000)
第2 - T + 1行:每行2个数,N, K中间用空格分割。(1 <= N <= 10^18, 1 <= K <= 2000)Output共T行,对应S(n) Mod 1000000007的结果。
Sample Input
3
5 3
4 2
4 1
Sample Output
225
30
10
分析
求自然数的幂和,有一个基于伯努利数的公式。
于是线性处理出每一项,那么每个case就是线性求解了。
伯努利数怎么计算呢?
首先B0=1,然后有
将Bn提取出来,得到
这样就能递推伯努利数了。
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <algorithm>
#include <cmath>
#include <ctime>
#include <vector>
#include <queue>
#include <map>
#include <stack>
#include <set>
#include <bitset>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
#define ms(a, b) memset(a, b, sizeof(a))
#define pb push_back
#define mp make_pair
#define pii pair<int, int>
#define eps 0.0000000001
#define IOS ios::sync_with_stdio(0);cin.tie(0);
#define random(a, b) rand()*rand()%(b-a+1)+a
#define pi acos(-1)
const ll INF = 0x3f3f3f3f3f3f3f3fll;
const int inf = 0x3f3f3f3f;
const int maxn = + ;
const int maxm = + ;
const int mod = 1e9+;
ll C[maxn][maxn],B[maxn],inv[maxn];
inline ll add(ll a){
if(a>=mod) a-=mod;
return a;
}
void init(){
C[][]=;
for(int i=;i<maxn;i++){
C[i][]=C[i][i]=;
for(int j=;j<i;j++){
C[i][j]=add(C[i-][j-]+C[i-][j]);
}
}
inv[]=;
for(int i=;i<maxn;i++) inv[i]=(mod-mod/i)*inv[mod%i]%mod; //线性递推逆元
B[]=;
for(int i=;i<maxn-;i++){
B[i]=;
for(int j=;j<i;j++){
B[i]=add(B[i]+C[i+][j]*B[j]%mod);
}
B[i]=add(B[i]*(-inv[i+])%mod+mod);
}
}
ll tmp[maxn];
int main() {
#ifdef LOCAL
freopen("in.txt", "r", stdin);
// freopen("output.txt", "w", stdout);
#endif
init();
int T;
scanf("%d",&T);
while(T--){
ll n,k;
scanf("%lld%lld",&n,&k);
n%=mod; //这里取个模比较好,求tmp时才不会爆
tmp[]=;
for(int i=;i<maxn;i++) tmp[i]=tmp[i-]*(n+)%mod;
ll ans=;
for(ll i=;i<=k+;i++){
ans=add(ans+C[k+][i]*B[k+-i]%mod*tmp[i]%mod);
}
ans=ans*inv[k+]%mod;
printf("%lld\n",ans);
}
return ;
}
51Nod - 1228 序列求和 (自然数幂和+伯努利数)的更多相关文章
- 51nod 1228 序列求和(伯努利数)
1228 序列求和 题目来源: HackerRank 基准时间限制:3 秒 空间限制:131072 KB 分值: 160 难度:6级算法题 收藏 关注 T(n) = n^k,S(n) = T(1 ...
- 51Nod 1228 序列求和
T(n) = n^k,S(n) = T(1) + T(2) + ...... T(n).给出n和k,求S(n). 例如k = 2,n = 5,S(n) = 1^2 + 2^2 + 3^2 + 4^ ...
- 51Node1228序列求和 ——自然数幂和模板&&伯努利数
伯努利数法 伯努利数原本就是处理等幂和的问题,可以推出 $$ \sum_{i=1}^{n}i^k={1\over{k+1}}\sum_{i=1}^{k+1}C_{k+1}^i*B_{k+1-i}*(n ...
- 51nod1228 序列求和(自然数幂和)
与UVA766 Sum of powers类似,见http://www.cnblogs.com/IMGavin/p/5948824.html 由于结果对MOD取模,使用逆元 #include<c ...
- 51nod 1228 序列求和 ( 1^k+2^k+3^k+...+n^k )
C为组合数,B为伯努利数 具体推到过程略 参考博客:http://blog.csdn.net/acdreamers/article/details/38929067# (我的式子和博客中的不一样,不过 ...
- 自然数幂和&伯努利数(Bernoulli)
二项式定理求自然数幂和 由二项式定理展开得 \[ (n+1)^{k+1}-n^{k+1}=\binom {k+1}1n^k+\binom {k+1}2n^{k-1}+\cdots+\binom {k+ ...
- 51NOD 1258 序列求和 V4 [任意模数fft 多项式求逆元 伯努利数]
1258 序列求和 V4 题意:求\(S_m(n) = \sum_{i=1}^n i^m \mod 10^9+7\),多组数据,\(T \le 500, n \le 10^{18}, k \le 50 ...
- UVA766 Sum of powers(1到n的自然数幂和 伯努利数)
自然数幂和: (1) 伯努利数的递推式: B0 = 1 (要满足(1)式,求出Bn后将B1改为1 /2) 参考:https://en.wikipedia.org/wiki/Bernoulli_numb ...
- 51nod 1258 序列求和 V4
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1258 1258 序列求和 V4 基准时间限制:8 秒 空间限制:131 ...
随机推荐
- 【BZOJ1011】【HNOI2008】遥远的行星 误差分析
题目大意 给你\(n,b\),还有一个数列\(a\). 对于每个\(i\)求\(f_i=\sum_{j=1}^{bi}\frac{a_ja_i}{i-j}\). 绝对误差不超过\(5\%\)就算对. ...
- web前端监控的三个方面探讨
一. js错误监控方式 1. 主动判断 我们在一些运算之后,得到一个期望的结果,然而结果不是我们想要的 // test.js function calc(){ // code... return va ...
- Gym-100451B:Double Towers of Hanoi
题目链接 题目大意:把汉诺双塔按指定顺序排好的最少步数 我写这题写了很久...终于发现不dp不行 把一个双重塔从一根桩柱移动到另一根桩柱需要移动多少次? 最佳策略是移动一个双重 (n-1) 塔,接着移 ...
- (一)flask-sqlalchemy的安装和配置
在使用flask-sqlalchemy之前要先了解ORM模型,什么叫做ORM模型 一.什么是ORM ORM 全拼Object-Relation Mapping. 称为对象-关系映射 主要实现模型对象到 ...
- bzoj3331 压力(圆方树)
题目链接 圆方树 圆方树就是对于联通无向图中的每一个点双新建一个方点,与点双中的每个点连一条边,然后将原来的边删去.将原来的点看作圆点,新建的点看作方点.所以叫做圆方树. 性质 1.圆方树肯定是棵树( ...
- 构建flutter环境并实现属于我们的hello world
我们知道flutter和react-native一样,都是既可以运行在andorid也可以运行在iOS环境下的. 我之前是react-native开发者,我的电脑环境中已经安装好了jdk,sdk,以及 ...
- 第十四节,卷积神经网络之经典网络Inception(四)
一 1x1卷积 在架构内容设计方面,其中一个比较有帮助的想法是使用 1×1 卷积.也许你会好奇,1×1 的卷积能做什么呢?不就是乘以数字么?听上去挺好笑的,结果并非如此,我们来具体看看. 过滤器为 1 ...
- 工具类:Colletions ,Arrays(静态导入,可变参数,强循环)
一.Collecti 专门用来操作集合的工具类,没有构造函数,全静态方法. 常用方法: static <T extends Comparable<? super T>> voi ...
- python config.ini的应用
config.ini文件的结构是以下这样的:结构是"[ ]"之下是一个section,一部分一部分的结构.以下有三个section,分别为section0,section1,sec ...
- function call操作符(operator()) 仿函数(functor)
主要是需要某种特殊的东西来代表一整组操作 代表一整组操作的当然是函数,过去通过函数指针实现 所以STL算法的特殊版本所接受的所谓条件或策略或一整组操作都以仿函数的形式呈现 #include <i ...