1009: [HNOI2008]GT考试
1009: [HNOI2008]GT考试
Time Limit: 1 Sec Memory Limit: 162 MB
Description
阿申准备报名参加GT考试,准考证号为N位数\(X_1X_2....X_n(0 \le X_i \le 9)\),他不希望准考证号上出现不吉利的数字.
他的不吉利数学\(A_1A_2...A_m(0 \le A_i \le 9)\)有M位,不出现是指\(X_1X_2...X_n\)中没有恰好一段等于\(A_1A_2...A_m\).\(A_1\)和\(X_1\)可以为\(0\)
Input
第一行输入N,M,K.接下来一行输入M位的数.\(N \le 10^9, M \le 20,K \le 1000\)
Output
阿申想知道不出现不吉利数字的号码有多少种,输出模K取余的结果.
Sample Input
4 3 100
111
Sample Output
81
解法
此题其实有点像poj2778,不过此题其实简单一些。
可以先用KMP求出可以从哪些状态转移一步到哪些状态。
之后就是一道矩阵的经典题目,求出n步的方案数。
#include <cstdio>
int n,m,mod,a[25][25],b[25][25],c[25][25],nxt[25];
char s[25];
inline void mul(int x[25][25],int y[25][25]) {
int i,j,k;
for(i=0;i<m;++i)
for(j=0;j<m;++j) {
c[i][j]=0;
for(k=0;k<m;++k)
c[i][j]=(c[i][j]+x[i][k]*y[k][j])%mod;
}
for(i=0;i<m;++i)
for(j=0;j<m;++j)
x[i][j]=c[i][j];
}
int main() {
int i,j=0,t;
for(scanf("%d%d%d%s",&n,&m,&mod,s+1),i=2;i<=m;++i) {
while(j&&s[j+1]!=s[i])j=nxt[j];
nxt[i]=((s[j+1]==s[i])?(++j):(j));
}
for(i=0;i<m;++i)
for(j=0;j<10;++j) {
for(t=i;t&&s[t+1]!=j+'0';t=nxt[t]);
if(((s[t+1]==j+'0')?++t:t)^m) (++b[t][i]<mod)?1:b[t][i]=0;
}
for(i=0;i<m;++i) a[i][i]=1;
while(n) {
if(n&1) mul(a,b);
mul(b,b);
n>>=1;
}
int ans=0;
for(i=0;i<m;++i) (ans+=a[i][0])<mod?1:ans-=mod;
printf("%d\n",ans);
return 0;
}
Ps:其实hdu2243和poj2778与此题都相似,不过它们是在Tire树上建立矩阵。
1009: [HNOI2008]GT考试的更多相关文章
- BZOJ 1009: [HNOI2008]GT考试( dp + 矩阵快速幂 + kmp )
写了一个早上...就因为把长度为m的也算进去了... dp(i, j)表示准考证号前i个字符匹配了不吉利数字前j个的方案数. kmp预处理, 然后对于j进行枚举, 对数字0~9也枚举算出f(i, j) ...
- BZOJ 1009 [HNOI2008]GT考试 (KMP + 矩阵快速幂)
1009: [HNOI2008]GT考试 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 4266 Solved: 2616[Submit][Statu ...
- bzoj 1009: [HNOI2008]GT考试 -- KMP+矩阵
1009: [HNOI2008]GT考试 Time Limit: 1 Sec Memory Limit: 162 MB Description 阿申准备报名参加GT考试,准考证号为N位数X1X2.. ...
- 【BZOJ】1009: [HNOI2008]GT考试(dp+矩阵乘法+kmp+神题)
http://www.lydsy.com/JudgeOnline/problem.php?id=1009 好神的题orzzzzzzzzzz 首先我是连递推方程都想不出的人...一直想用组合来搞..看来 ...
- bzoj 1009 [HNOI2008]GT考试(DP+KMP+矩阵乘法)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1009 [题意] 给定一个字符串T,问长度为n且不包含串T的字符串有多少种. [思路] ...
- [BZOJ 1009] [HNOI2008] GT考试 【AC自动机 + 矩阵乘法优化DP】
题目链接:BZOJ - 1009 题目分析 题目要求求出不包含给定字符串的长度为 n 的字符串的数量. 既然这样,应该就是 KMP + DP ,用 f[i][j] 表示长度为 i ,匹配到模式串第 j ...
- BZOJ 1009: [HNOI2008]GT考试(kmp+dp+矩阵优化)
http://www.lydsy.com/JudgeOnline/problem.php?id=1009 题意: 思路:真的是好题啊! 对于这种题目,很有可能就是dp,$f[i][j]$表示分析到第 ...
- bzoj 1009 [HNOI2008]GT考试——kmp+矩阵优化dp
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1009 首先想到 确保模式串不出现 就是 确保每个位置的后缀不是该模式串. 为了dp,需要记录 ...
- 题解:BZOJ 1009 HNOI2008 GT考试 KMP + 矩阵
原题描述: 阿申准备报名参加GT考试,准考证号为N位数 X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字.他的不吉利数学A1A2...Am(0<=Ai&a ...
随机推荐
- 内网渗透-代理(reGeorg)
我对于reGeorg的使用,只是简单说下. 首先需要下载reGeorg,下载地址:https://github.com/sensepost/reGeorg 然后将reGeorg,上传到服务端.直接访问 ...
- 获得设备的唯一标识符UDID
在IOS5之后,苹果为避免根据UDID获得用户的信息,而禁止使用uniqueIdentifier获得UDID,但是仍有些应用需要根据UDID区分设备 有一个系统的库IOKit.framework可以获 ...
- Android窗口机制分析与UI管理系统
类图关系 在看Android的窗口机制之前,先看看其主要的类图关系以及层级之间的依赖与调用关系 1.window在当前的android系统的中的呈现形式是PhoneWindow (frameworks ...
- javascript函数的几种写法集合
1.常规写法 function fnName(){ console.log("常规写法"); } 2.匿名函数,函数保存到变量里 var myfn = function(){ co ...
- 数据库设计范式2——BC范式和第四范式
我在很久之前的一篇文章中介绍了数据库模型设计中的基本三范式,今天,我来说一说更高级的BC范式和第四范式. 回顾 我用大白话来回顾一下什么是三范式: 第一范式:每个表应该有唯一标识每一行的主键. 第二范 ...
- Oracle导入导出
Oracle 10g 已经引入了数据泵(点击Data Dump)技术,这项技术和之前的exp/imp有哪些好处呢,简单的来说就是恢复和备份速度非常快: 在说明数据泵的使用方法之前,我们先来了解二者的区 ...
- python处理json和redis hash的坑
1.使用MySQLdb读取出来的数据是unicode字符串,如果要写入redis的hash中会变成 "{u'eth0_outFlow': 2.5, u'eth1_inFlow': 3.44} ...
- windows下redis安装
最近因公司项目原因,去了趟昆明出差,其中第一次接触安装redis,配置sentinel,学习到不少,但也都是皮毛而已,本随笔记下所学知识. 1.首先介绍下redis,来源自百度百科 redis是一个k ...
- [转].NET Core中的认证管理解析
本文转自:http://www.cnblogs.com/durow/p/5783089.html 0x00 问题来源 在新建.NET Core的Web项目时选择“使用个人用户账户”就可以创建一个带有用 ...
- 项目实现不同环境不同配置文件-maven profile
最近接触的项目都是在很多地方都落地的项目,需要支持不同的环境使用不同的配置文件.一直以来都以为是人工的去写不同的配置文件,手动的去修改运用的配置文件.感觉自己还是太low呀.maven的使用的还停留在 ...