Nginx+Memcache+一致性hash算法 实现页面分布式缓存(转)
网站响应速度优化包括集群架构中很多方面的瓶颈因素,这里所说的将页面静态化、实现分布式高速缓存就是其中的一个很好的解决方案...
1)先来看看Nginx负载均衡
Nginx负载均衡依赖自带的 ngx_http_upstream_module 、 ngx_http_memcached_module两大功能模块,其中一致性hash算法Nginx本身是不支持的,可以借助第三方模块: ngx_http_upstream_consistent_hash
或者直接使用淘宝的Tengine:
http://tengine.taobao.org/document_cn/http_upstream_consistent_hash_cn.html
模块的添加
unzip ngx_http_consistent_hash-master.zip
cd nginx-1.6.3 #进入nginx安装原始文件夹
./configure --user=www --group=www --add-module=../ngx_http_consistent_hash-master --with-http_ssl_module --with-http_stub_status_module --prefix=/application/nginx-1.6.3/ #添加模块
make #如果是生产环境添加模块,切记不要make install,否则会覆盖文件
cp objs/nginx /application/nginx/sbin/nginx #停掉nginx进程,覆盖二进制文件
[root@lb01 sbin]# ./nginx -V #查看模块是否添加成功
nginx version: nginx/1.6.3
built by gcc 4.4.7 20120313 (Red Hat 4.4.7-16) (GCC)
TLS SNI support enabled
configure arguments: --user=www --group=www --add-module=../ngx_http_consistent_hash-master --with-http_ssl_module --with-http_stub_status_module --prefix=/application/nginx-1.6.3/
2)调度算法选择
如上图,在我们确定要将数据采用分布式memcache服务器缓存起来后,就面临一个问题:采用一种什么方式去缓存和调度数据?很显然,最简单的策略就是将每一次Memcache请求都随机发送到一台Memcache服务器,但这种策略可能又会带来两个问题:一是同一份数据可能被存在不同机器上而造成数据冗余,二是可能某数据已经被缓存但是没法命中。因此,随机策略无论是时间效率还是空间效率都利用的不是很好。
url_hash算法
url_hash算法是Nginx负载均衡动态调度算法中的一种,是将一个完整的URL经过哈希运算key=HASH($URL)%3(3是memcache节点台数)得到一个key值,具有相同key值得URL也就是Memcache请求将会发往同一台缓存服务器,比如,H=0发往Memcache_server01、H=1发往Memcache_server02、H=2发往Memcache_server03,避免了数据冗余和命中率低的两个问题;
普通url_hash的缺点就是,计算公式key=HASH($URL)%N中,一旦缓存节点N数量发生变化,那么所有数据都要重新按照公式key=HASH($URL)%(N-1)计算,之前计算得到的key值结果就会全部发生变化,意味着缓存节点下缓存的数据全部失效!要重新缓存全部节点数据。如果是高并发大数据量的话,对后端节点服务器的冲击是致命的,很有可能会导致系统的全面瘫痪。这也是为什么在使用大量的分布式缓存系统在遭遇系统重启时,要对缓存预热及严格遵守集群服务启动顺序的原因。
一致性HASH算法
一致性HASH算法的出现有效的解决了上面普通url_hash调度算法在节点变动后面临全部缓存失效的问题
简单地说,一致性哈希将整个哈希值空间组织成一个虚拟的圆环,如假设某空间哈希函数H的值空间是0-2^32-1(即哈希值是一个32位无符号整形),整个哈希空间如下:
下一步将各个服务器使用H进行一个哈希计算,具体可以使用服务器的IP地址或者主机名作为关键字,这样每台机器能确定其在上面的哈希环上的位置了,并且是按照顺时针排列,这里我们假设三台节点memcache经计算后位置如下
接下来使用相同算法计算出数据的哈希值h,并由此确定数据在此哈希环上的位置
假如我们有数据A、B、C、D、4个对象,经过哈希计算后位置如下:
根据一致性哈希算法,数据A就被绑定到了server01上,D被绑定到了server02上,B、C在server03上,是按照顺时针找最近服务节点方法
这样得到的哈希环调度方法,有很高的容错性和可扩展性:
假设server03宕机
可以看到此时A、C、B不会受到影响,只是将B、C节点被重定位到Server 1。一般的,在一致性哈希算法中,如果一台服务器不可用,则受影响的数据仅仅是此服务器到其环空间中前一台服务器(即顺着逆时针方向行走遇到的第一台服务器)之间数据,其它不会受到影响。
考虑另外一种情况,如果我们在系统中增加一台服务器Memcached Server 04:
此时A、D、C不受影响,只有B需要重定位到新的Server 4。一般的,在一致性哈希算法中,如果增加一台服务器,则受影响的数据仅仅是新服务器到其环空间中前一台服务器(即顺着逆时针方向行走遇到的第一台服务器)之间数据,其它不会受到影响。
综上所述,一致性哈希算法对于节点的增减都只需重定位环空间中的一小部分数据,具有较好的容错性和可扩展性。
一致性哈希的缺点:在服务节点太少时,容易因为节点分部不均匀而造成数据倾斜问题。我们可以采用增加虚拟节点的方式解决。
为了解决这种数据倾斜问题,一致性哈希算法引入了虚拟节点机制,即对每一个服务节点计算多个哈希【具体可以这么做:根据服务器的名字或者是ip计算节点hash的时候,可以加上编号,然后再计算哈希值】,在每个计算的结果位置都放置一个服务节点,称为虚拟节点。这样,数据再被存储的时候,就不会因为服务器在环上的间距太大而导致“数据倾斜”了。
同时数据定位算法不变,只是多了一步虚拟节点 到实际节点的映射,例如定位到“Memcached Server 1#1”、“Memcached Server 1#2”、“Memcached Server 1#3”三个虚拟节点的数据均定位到Server 1上。这样就解决了服务节点少时数据倾斜的问题。在实际应用中,通常将虚拟节点数设置为32甚至更大,因此即使很少的服务节点也能做到相对均匀的数据分 布,避免出现雪崩的情况
3)Nginx配置
upstream memcached {
consistent_hash $request_uri; #采用一致性哈希计算请求字段request_rui值
server 172.16.2.11:11211; #节点服务器
server 172.16.2.12:11212;
server 172.16.2.13:11213;
} server {
listen 80;
server_name lichengbing.cn; location ^~ /cache/ { #匹配带cache目录时将请求转发给计算好的哈希节点服务器
set $enhanced_memcached_key $request_uri;
enhanced_memcached_pass memcached;
} error_page 404 502 504 = @fallback;
}
location @fallback {
proxy_pass http://backend;
}
4)修改示例PHP页面
$htmlContent = file_get_contents('http://lichengbing.cn'); // 页面过期时间
$expiresTime = 60 * 5; // Last-Modified头设置的时间
$lastModified = gmdate('D, d M Y H:i:s \G\M\T', time()); // Expires头设置的时间
$expires = gmdate('D, d M Y H:i:s \G\M\T', time() + $expiresTime); // 最终缓存的内容
$cacheContent = "EXTRACT_HEADERS
Content-Type: text/html
Cache-Control:max-age=$expiresTime
Expires:$expires
Last-Modified:$lastModified $htmlContent"; // 获取memcache实例
$memcached = new Memcache();
$memcached->addServer('172.16.2.11', 11211);
$memcached->addServer('172.16.2.12', 11212);
$memcached->addServer('172.16.2.13', 11213); // 写入缓存
$memcached->set('/cache/index.html', $cacheContent, $expiresTime);
至此,我们已经简单的完成了使用Nginx和Memcached对缓存页面的访问,但这只是后端的简单实现,在前端还需要实现对页面缓存的管理等等的工作。
原文地址(http://www.tuicool.com/articles/BZBVfaM)
Nginx+Memcache+一致性hash算法 实现页面分布式缓存(转)的更多相关文章
- 一致性Hash算法在Redis分布式中的使用
由于redis是单点,但是项目中不可避免的会使用多台Redis缓存服务器,那么怎么把缓存的Key均匀的映射到多台Redis服务器上,且随着缓存服务器的增加或减少时做到最小化的减少缓存Key的命中率呢? ...
- 一致性Hash算法介绍(分布式环境算法)
32的整数环(这个环被称作一致性Hash环),根据节点名称的Hash值(其分布范围同样为0~232)将节点放置在这个Hash 环上.然后根据KEY值计算得到其Hash值(其分布范围也同样为0~232 ...
- 分布式缓存技术memcached学习(四)—— 一致性hash算法原理
分布式一致性hash算法简介 当你看到“分布式一致性hash算法”这个词时,第一时间可能会问,什么是分布式,什么是一致性,hash又是什么.在分析分布式一致性hash算法原理之前,我们先来了解一下这几 ...
- 分布式缓存技术memcached学习系列(四)—— 一致性hash算法原理
分布式一致性hash算法简介 当你看到"分布式一致性hash算法"这个词时,第一时间可能会问,什么是分布式,什么是一致性,hash又是什么.在分析分布式一致性hash算法原理之前, ...
- 分布式一致性hash算法
写在前面 在学习Redis的集群内容时,看到这么一句话:Redis并没有使用一致性hash算法,而是引入哈希槽的概念.而分布式缓存Memcached则是使用分布式一致性hash算法来实现分布式存储. ...
- memcache的一致性hash算法使用
一.概述 1.我们的memcache客户端(这里我看的spymemcache的源码),使用了一致性hash算法ketama进行数据存储节点的选择.与常规的hash算法思路不同,只是对我们要存储数据的k ...
- 分布式缓存一致性hash算法理解
今天阅读了一下大型网络技术架构这本苏中的分布式缓存一致性hash算法这一节,针对大型分布式系统来说,缓存在该系统中必不可少,分布式集群环境中,会出现添加缓存节点的需求,这样需要保障缓存服务器中对缓存的 ...
- 分布式缓存设计:一致性Hash算法
缓存作为数据库前的一道屏障,它的可用性与缓存命中率都会直接影响到数据库,所以除了配置主从保证高可用之外还需要设计分布式缓存来扩充缓存的容量,将数据分布在多台机器上如果有一台不可用了对整体影响也比较小. ...
- 分布式缓存一致性hash算法
当服务器不多,并且不考虑扩容的时候,可直接使用简单的路由算法,用服务器数除缓存数据KEY的hash值,余数作为服务器下标即可. 但是当业务发展,网站缓存服务需要扩容时就会出现问题,比如3台缓存服务器要 ...
随机推荐
- margin外边距属性
外边距属性: 设置元素与元素之间的距离(外边距),4个方向(上右下左). margin:长度值|百分比|auto margin-top margin-right margin-bottom margi ...
- 20155219 付颖卓《基于ARM试验箱的接口应用于测试》课程设计个人报告
一.个人贡献 参与课设题目讨论及完成全过程: 资料收集: 负责代码调试: 修改小组结题报告: 负责试验箱的管理: 二.设计中遇到的问题及解决方法 1.makefile无法完成编译.如下图: 答:重新下 ...
- 更改手机系统的User-Agent & okhttp
okhttp 和 volley 1. 之前用的是volley,其中一部分功能,比如User-Agent,是系统去处理的,改成okhttp库后,这部分功能需要浏览器自己处理 2. 具体区别可以参考: h ...
- Bartender标签传参与打印
在VS中添加bartender的COM组件引用后(一定要添加,否则会提示找不到BarTender.Application): /// <summary> /// Bartender模板打印 ...
- 湖南大学第十四届ACM程序设计新生杯(重现赛)I:II play with GG(博弈论||DP)
链接:https://ac.nowcoder.com/acm/contest/338/I 来源:牛客网 题目描述 IG won the S championship and many people a ...
- Matlab rgb2hsv
>> im = imread('lake.jpg');>> imshow(im)>> hsv_im = rgb2hsv(im);>> imshow(hs ...
- TableLaout
<?xml version="1.0" encoding="utf-8"?><LinearLayout xmlns:android=" ...
- jdk的下载
1.打开oracle的官网https://www.oracle.com/index.html 2.拖动页面到最后,找到java for developer 并点击 3. 4.拖动到最后找到java A ...
- 文件及文件夹操作- File类、Directory 类、FileInfo 类、DirectoryInfo 类
文件及文件夹操作: C/S:WinForm可以操作客户端文件 Client ServerB/S:Brower Server 命名空间:using system .IO; 1. File类: 创建:Fi ...
- [Java Web学习]Tomcat启动时报war exploded: Error during artifact deployment
报错:Artifact FirstWeb:war exploded: Error during artifact deployment. See server log for details. SEV ...