题目链接:

https://www.lydsy.com/JudgeOnline/problem.php?id=1076

题目大意:

你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关。在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再吃)。
 宝物一共有n种,系统每次抛出这n种宝物的概率都相同且相互独立。也就是说,即使前k-1次系统都抛出宝物1(这种情况是有可能出现的,尽管概率非常小),第k次抛出各个宝物的概率依然均为1/n。 获取第i种宝物将得到Pi
分,但并不是每种宝物都是可以随意获取的。第i种宝物有一个前提宝物集合Si。只有当Si中所有宝物都至少吃过一次,才能吃第i种宝物(如果系统抛出了一个目前不能吃的宝物,相当于白白的损失了一次机会)。注意,Pi可
以是负数,但如果它是很多高分宝物的前提,损失短期利益而吃掉这个负分宝物将获得更大的长期利益。 假设你采取最优策略,平均情况你一共能在奖励关得到多少分值?

思路:
这一步的期望=(上一步的期望+这一步的得分)/K

逆向推

 #include<bits/stdc++.h>
#define IOS ios::sync_with_stdio(false);//不可再使用scanf printf
#define Max(a, b) ((a) > (b) ? (a) : (b))//禁用于函数,会超时
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Mem(a) memset(a, 0, sizeof(a))
#define Dis(x, y, x1, y1) ((x - x1) * (x - x1) + (y - y1) * (y - y1))
#define MID(l, r) ((l) + ((r) - (l)) / 2)
#define lson ((o)<<1)
#define rson ((o)<<1|1)
#define Accepted 0
#pragma comment(linker, "/STACK:102400000,102400000")//栈外挂
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while (ch<''||ch>''){if (ch=='-') f=-;ch=getchar();}
while (ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
typedef long long ll;
const int maxn = ;
const int MOD = ;//const引用更快,宏定义也更快
const int INF = 1e9 + ;
const double eps = 1e-;
const double pi = acos(-); double v[];
int d[];
double dp[][];
int main()
{
int k, n, x;
cin >> k >> n;
for(int i = ; i <= n; i++)
{
cin >> v[i];
while(cin >> x && x)d[i] += ( << (x - ));
}
for(int i = k; i >= ; i--)
{
for(int j = ; j < ( << n); j++)
{
for(int c = ; c <= n; c++)
if((d[c] & j) == d[c])//j状态包含了c的所有前驱物品
dp[i][j] += max(dp[i + ][j], dp[i + ][j | (<<(c - ))] + v[c]);//第i次啥都不取,或者取第c件物品
else dp[i][j] += dp[i + ][j];
dp[i][j] /= n;
}
}
printf("%.6f\n", dp[][]);
return Accepted;
}

BZOJ 1076 奖励关 状态压缩DP的更多相关文章

  1. [BZOJ]1076 奖励关(SCOI2008)

    终于又一次迎来了一道期望DP题,按照约定,小C把它贴了出来. Description 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃 ...

  2. BZOJ 1076 奖励关(状压期望DP)

    当前得分期望=(上一轮得分期望+这一轮得分)/m dp[i,j]:第i轮拿的物品方案为j的最优得分期望 如果我们正着去做,会出现从不合法状态(比如前i个根本无法达到j这种方案),所以从后向前推 如果当 ...

  3. bzoj 1076 奖励关 状压+期望dp

    因为每次选择都是有后效性的,直接dp肯定不行,所以需要逆推. f[i][j]表示从第i次开始,初始状态为j的期望收益 #include<cstdio> #include<cstrin ...

  4. BZOJ 1076 奖励关

    注意几点: 1.为什么要逆推?由此状态可以轻易算出彼状态是否可行,而彼状态却无法轻易还原为此状态. 2.为什么可以逆推?假设时光倒流了....23333 3.注意位运算的准确,大胆写方程. #incl ...

  5. scoi 2008 && bzoj 1076 奖励关

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=3223 思路:15?好,状压,OK. 这是转移方程 if((s[k]&j)==s[k] ...

  6. 【bzoj1076】[SCOI2008]奖励关 期望dp+状态压缩dp

    题目描述 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再 ...

  7. BZOJ 1087状态压缩DP

    状态压缩DP真心不会写,参考了别人的写法. 先预处理出合理状态, 我们用二进制表示可以放棋子的状态,DP[I][J][K]:表示现在处理到第I行,J:表示第I行的状态,K表示现在为止一共放的棋子数量. ...

  8. [转]状态压缩dp(状压dp)

    状态压缩动态规划(简称状压dp)是另一类非常典型的动态规划,通常使用在NP问题的小规模求解中,虽然是指数级别的复杂度,但速度比搜索快,其思想非常值得借鉴. 为了更好的理解状压dp,首先介绍位运算相关的 ...

  9. 状态压缩DP(大佬写的很好,转来看)

    奉上大佬博客 https://blog.csdn.net/accry/article/details/6607703 动态规划本来就很抽象,状态的设定和状态的转移都不好把握,而状态压缩的动态规划解决的 ...

随机推荐

  1. Spring学习之路-SpringBoot简单入门

    简单讲SpringBoot是对spring和springMVC的二次封装和整合,新添加了一些注解和功能,不算是一个新框架. 学习来源是官方文档,虽然很详细,但是太墨迹了… 地址:https://doc ...

  2. [转]解决Magento批量导入带图片的商品的问题

    本文转自:http://www.phpstudio.info/show-121-791-1.html 一般来说,Magento后台管理里的CSV批量导入,可以解决我们商品批量上传的大部分问题,我们只要 ...

  3. EF 求和 GroupBy多个字段

    GroupBy根据多个字段分组使用方式: 一.使用扩展方法 query.GroupBy(q => new { q.Year, q.Month }) .Select(q => new { Y ...

  4. 学习Spring.Net:1.简单的应用之控制台

    1.开始. 2.新建一个控制台,我们新建一个SpringNetTest类. using System; using System.Collections.Generic; using System.L ...

  5. 【linux】suse linux 常用命令

    命令ls——列出文件 ls -la 给出当前目录下所有文件的一个长列表,包括以句点开头的“隐藏”文件 ls a* 列出当前目录下以字母a开头的所有文件 ls -l *.doc 给出当前目录下以.doc ...

  6. 图解SVN的branch合并到trunk的过程

    SVN branch合并到主线的整个过程相对来说还是比较繁琐的,下面一个图揭示了一个大概的过程: 1. 将branch上的代码update到本地. 2.将branch本地的代码commit到branc ...

  7. 并发修改异常(ConcurrentModificationException)

    并发修改异常(ConcurrentModificationException) 这个异常,使用集合的时候应该很常见,这个异常产生的原因是因为java中不允许直接修改集合的结构. 先贴上个有趣的例子,给 ...

  8. Java图片验证码乱码问题

    有时部署到linux服务器上的web项目的图形验证码可能会出现乱码问题 这不是编码格式出错了,而是可能服务器上没有图形验证码中限定的那种字体 比如生成图形验证码的代码: Font font = new ...

  9. Dynamics 365Online 使用adal.js注册和配置SimpleSPA应用程序

    本篇是基于dynamics 365online撰写,本文中使用的365online及azure均为试用版,因为online在国内还没落地,所以我申请的是新加坡版,online的申请方式可见我之前的博文 ...

  10. RaPC(rasterized polygon clipper): A discrete grid-based polygon clipping algorithm

    RaPC(rasterized polygon clipper)-A discrete grid-based polygon clipping algorithm This algorithm is ...