基本操作:

  • 读取文件(与pandas读取csv相似):
import numpy
numpy.genfromtxt("word.txt", delimiter=',', dtype=str)
# => <class 'numpy.ndarray'>
  • numpy.array(序列)
# 一维向量
vector = numpy.array([1, 2, 3, 4])
print(vector.shape) # 二维矩阵
matrix = numpy.array([[5, 10, 15], [20, 25, 30]])
print(matrix.shape)
(4,)
(2, 3)
  • numpy.array(序列),即 numpy.ndarry 类型,支持数组广播

    • 与关系运算符号比较判断使用( ==, >=, >, <)
matrix = numpy.array([
[5, 10, 15],
[20, 25, 30],
[35, 40, 45]
])
matrix >= 25 # 对数组中的每个元素进行比较

array([[False, False, False],
       [False,  True,  Tru e],
       [ True,  True,  True]])

  • numpy.array(序列), 即 numpy.ndarry 类型,获取值的方式

    • 相同形状(行,列),bool 型 ndarray,根据true显示
    • 由数字切片或逗号构成:a[1,:] 等价于 a[1][:]
  • numpy.zeros( (行数n, 列数m) )  初始化一个,n行,m列的矩阵
  • numpy.ones( (n, l, k) )  初始化一个 n, l, k 的一个3维的单位矩阵
  • numpy.random.random( (n, m) )  初始化一个 n,m的随机二维矩阵
  • numpy.linspace(offset, end, limit)  初始化一个从 offset 到 end 大小的取limit个的一位矩阵
  • numpy.dtype 类型,要求输入时类型一致,不一致自动抓化为一致,故结果中元素只有一种类型
  • numpy.astype(float) 更改类型
  • numpy.arange(number) 创建一维数组,类似 range , 通常配合 reshape 一起使用,修改为多维数组
import numpy as np
a = np.arange(15)
print("a=", a)
b = a.reshape(3, 5)
b
 
a= [ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14]
Out[2]:
array([[ 0,  1,  2,  3,  4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14]])

numpy 初识(一)的更多相关文章

  1. numpy初识

    1,机器学习numpy 初识 1)numpy初识 import numpy num1= numpy.array([1,2,3]) dtype('num1') #查找类型 num1.dtype num1 ...

  2. numpy 初识(二)

    针对 numpy.array(序列)的实例介绍 ndim 数组(矩阵)的维度 size 所有元素的和 数学运算(+, -) 元素个数一样,对应位置相减 加,减,乘,平方一个数,执行广播形式:即都减去一 ...

  3. Python学习之路:NumPy初识

    import numpy as np; //一维NumPy数组 myArray = np.array([1,2,3,4]); print(myArray); [1 2 3 4] //打印一维数组的形状 ...

  4. numpy初识 old

    一.创建ndarrary 1.使用np.arrary()创建 1).一维数组 import numpy as np np.array([1, 2, 3, 4]) 2).二维数组 np.array([[ ...

  5. numpy 初识(三)

    基本运算 exp: e sqrt:开放 floor:向下取整 ravel:矩阵拉成一个向 T:转置(行和列变换) 改变形状: resize: 更改其形状(返回值为None)a.resize(6,2) ...

  6. 初识NumPy库-基本操作

    ndarray(N-dimensional array)对象是整个numpy库的基础. 它有以下特点: 同质:数组元素的类型和大小相同 定量:数组元素数量是确定的 一.创建简单的数组: np.arra ...

  7. 初识numpy

    from numpy import *   导入numpy包 random可以生成随机数组 通过mat函数,将数组转换成矩阵,可以对矩阵进行求逆计算等.其中.I操作实现了矩阵求逆计算操作. 执行矩阵乘 ...

  8. jupter nootbok 快捷键、NumPy模块、Pandas模块初识

    jupter nootbok 快捷键 插入cell:a b 删除cell:x cell模式的切换:m:Markdown模式 y:code模式 运行cell:shift+enter tab:补全 shi ...

  9. 初识numpy的多维数组对象ndarray

    PS:内容来源于<利用Python进行数据分析> 一.创建ndarray 1.array :将一个序列(嵌套序列)转换为一个数组(多维数组) In[2]: import numpy as ...

随机推荐

  1. 检测到在集成的托管管道模式下不适用的 ASP.NET 设置

    system.webServer节点下加上 <validation  validateIntegratedModeConfiguration="false" />

  2. 转:sql语句优化

    性能不理想的系统中除了一部分是因为应用程序的负载确实超过了服务器的实际处理能力外,更多的是因为系统存在大量的SQL语句需要优化. 为了获得稳定的执行性能,SQL语句越简单越好.对复杂的SQL语句,要设 ...

  3. Java-控制台传递参数

    今天组长叫我把所有的参数(写死的),用控制器输入,使其变成可变的. ------我的程序是需要读取文件的,控制台输入即,是文件放在哪我都可以读取. 比如我需要读取的demo.txt文件在D盘根目录下, ...

  4. angular、jquery、vue 的区别与联系

    angular和jquery的区别 angular中是尽量避免操作DOM, angular是基于数据驱动, 适合做数据操作比较繁琐的项目,angular适用于单页面开发,是一个比较完善的mvvm框架, ...

  5. 【工具推荐】截图工具 Snipaste

    0. 说明 [官网介绍] Snipaste 是一个简单但强大的截图工具,也可以让你将截图贴回到屏幕上!下载并打开 Snipaste,按下 F1 来开始截图,再按 F3,截图就在桌面置顶显示了.就这么简 ...

  6. November 08th, 2017 Week 45th Wednesday

    Keep your face to the sunshine and you cannot see the shadow. 始终面朝阳光,我们就不会看到黑暗. I love sunshine, but ...

  7. div设置contenteditable="true" 光标消失:原因

    原因1:document.onselectstart= function(){return false;}; 原因2:父层设置了user-select:none 导致 子层设置了 contentedi ...

  8. 【洛谷】【单调栈】P1823 音乐会的等待

    [题目描述:] N个人正在排队进入一个音乐会.人们等得很无聊,于是他们开始转来转去,想在队伍里寻找自己的熟人.队列中任意两个人A和B,如果他们是相邻或他们之间没有人比A或B高,那么他们是可以互相看得见 ...

  9. window.location对象详解

    window.location.href(当前URL) 结果如下: http://www.myurl.com:8866/test?id=123&username=xxx window.loca ...

  10. $\mathcal{Friends' \ \ Links}$友情链接

    \(\mathcal{JuLao \ \& \ \ Dalao}\) \(\_rqy\) \(\_stdcall\) 并(吊)肩(锤)奋(死)斗(我)的\(Oier\) 王旭 苑骏康 张梓淳 ...