HDU 4940 Destroy Transportation system(无源汇上下界网络流)
Let’s represent his enemy’s transportation system as a simple
directed graph G with n nodes and m edges. Each node is a city and each
directed edge is a directed road. Each edge from node u to node v is
associated with two values D and B, D is the cost to destroy/remove such
edge, B is the cost to build an undirected edge between u and v.
His enemy can deliver supplies from city u to city v if and only if
there is a directed path from u to v. At first they can deliver supplies
from any city to any other cities. So the graph is a strongly-connected
graph.
He will choose a non-empty proper subset of cities,
let’s denote this set as S. Let’s denote the complement set of S as T.
He will command his soldiers to destroy all the edges (u, v) that u
belongs to set S and v belongs to set T.
To destroy an edge, he must pay the related cost D. The total cost he will pay is X. You can use this formula to calculate X:

After that, all the edges from S to T are destroyed. In order to
deliver huge number of supplies from S to T, his enemy will change all
the remained directed edges (u, v) that u belongs to set T and v belongs
to set S into undirected edges. (Surely, those edges exist because the
original graph is strongly-connected)
To change an edge, they
must remove the original directed edge at first, whose cost is D, then
they have to build a new undirected edge, whose cost is B. The total
cost they will pay is Y. You can use this formula to calculate Y:

At last, if Y>=X, Tom will achieve his goal. But Tom is so lazy
that he is unwilling to take a cup of time to choose a set S to make
Y>=X, he hope to choose set S randomly! So he asks you if there is a
set S, such that Y<X. If such set exists, he will feel unhappy,
because he must choose set S carefully, otherwise he will become very
happy.
The first line contains an integer T(T<=200), indicates the number of cases.
For each test case, the first line has two numbers n and m.
Next m lines describe each edge. Each line has four numbers u, v, D, B.
(2=<n<=200, 2=<m<=5000, 1=<u, v<=n, 0=<D, B<=100000)
The meaning of all characters are described above. It is guaranteed that the input graph is strongly-connected.
starting from 1.If such set doesn’t exist, print “happy”, else print
“unhappy”.
题意
给你N个点M条边强连通的有向简单图,D代表删掉这个边的花费,D+B代表重建为双向边的花费,让你选择一个集合S,其余的点在T集合,X为u在S集合v在T集合的所有边的D之和,Y为u在T集合v在S集合的所有边的D+B之和,求是否存在一个集合S,使得X>Y,若存在输出unhappy,否则输出happy
题解
无源汇上下界网络流,下界D,上界D+B,判断是否存在可行流
若存在,则说明对于任意集合S,流出的流量=流入的流量,X<=流出的流量<=Y
建图每条边建为自由流(u,v,B)
对于每个点,设M为总流入-总流出
若M>0,则建(S,i,M)说明i需要多流出M
若M<0,则建(i,T,M)说明i需要多流入M
最后判断与S连的边是否全满流
代码
#include<bits/stdc++.h>
using namespace std; const int maxn=1e5+;
const int maxm=2e5+;
const int INF=0x3f3f3f3f; int TO[maxm],CAP[maxm],NEXT[maxm],tote;
int FIR[maxn],gap[maxn],cur[maxn],d[maxn],q[];
int n,m,S,T; void add(int u,int v,int cap)
{
TO[tote]=v;
CAP[tote]=cap;
NEXT[tote]=FIR[u];
FIR[u]=tote++; TO[tote]=u;
CAP[tote]=;
NEXT[tote]=FIR[v];
FIR[v]=tote++;
}
void bfs()
{
memset(gap,,sizeof gap);
memset(d,,sizeof d);
++gap[d[T]=];
for(int i=;i<=n;++i)cur[i]=FIR[i];
int head=,tail=;
q[]=T;
while(head<=tail)
{
int u=q[head++];
for(int v=FIR[u];v!=-;v=NEXT[v])
if(!d[TO[v]])
++gap[d[TO[v]]=d[u]+],q[++tail]=TO[v];
}
}
int dfs(int u,int fl)
{
if(u==T)return fl;
int flow=;
for(int &v=cur[u];v!=-;v=NEXT[v])
if(CAP[v]&&d[u]==d[TO[v]]+)
{
int Min=dfs(TO[v],min(fl,CAP[v]));
flow+=Min,fl-=Min,CAP[v]-=Min,CAP[v^]+=Min;
if(!fl)return flow;
}
if(!(--gap[d[u]]))d[S]=n+;
++gap[++d[u]],cur[u]=FIR[u];
return flow;
}
int ISAP()
{
bfs();
int ret=;
while(d[S]<=n)ret+=dfs(S,INF);
return ret;
}
void init()
{
tote=;
memset(FIR,-,sizeof FIR);
}
int in[maxn];
int main()
{
int t;
scanf("%d",&t);
for(int ca=;ca<=t;ca++)
{
init();
memset(in,,sizeof in);
scanf("%d%d",&n,&m);
for(int i=,u,v,d,b;i<m;i++)
{
scanf("%d%d%d%d",&u,&v,&d,&b);
add(u,v,b);
in[u]-=d;
in[v]+=d;
}
S=n+,T=S+,n+=;
int sum=;
for(int i=;i<=n;i++)
if(in[i]>)
{
add(S,i,in[i]);
sum+=in[i];
}
else if(in[i]<)
add(i,T,-in[i]);
printf("Case #%d: %s\n",ca,ISAP()==sum?"happy":"unhappy");
}
return ;
}
HDU 4940 Destroy Transportation system(无源汇上下界网络流)的更多相关文章
- hdu 4940 Destroy Transportation system( 无源汇上下界网络流的可行流推断 )
题意:有n个点和m条有向边构成的网络.每条边有两个花费: d:毁坏这条边的花费 b:重建一条双向边的花费 寻找这样两个点集,使得点集s到点集t满足 毁坏全部S到T的路径的费用和 > 毁坏全部T到 ...
- hdu 4940 Destroy Transportation system (无源汇上下界可行流)
Destroy Transportation system Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 ...
- hdu 4940 Destroy Transportation system(水过)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4940 Destroy Transportation system Time Limit: 2000/1 ...
- HDU 4940 Destroy Transportation system(无源汇有上下界最大流)
看不懂题解以及别人说的集合最多只有一个点..... 然后试了下题解的方法http://blog.sina.com.cn/s/blog_6bddecdc0102uzka.html 首先是无源汇有上下界最 ...
- HDU 4940 Destroy Transportation system(2014 Multi-University Training Contest 7)
思路:无源汇有上下界可行流判定, 原来每条边转化成 下界为D 上界为 D+B ,判断是否存在可行流即可. 为什么呢? 如果存在可行流 那么说明对于任意的 S 集合流出的肯定等于 流入的, ...
- ZOJ 2314 Reactor Cooling(无源汇上下界网络流)
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=2314 题意: 给出每条边流量的上下界,问是否存在可行流,如果存在则输出. ...
- ZOJ 2314 Reactor Cooling [无源汇上下界网络流]
贴个板子 #include <iostream> #include <cstdio> #include <cstring> #include <algorit ...
- POJ 2396 Budget(有源汇上下界网络流)
Description We are supposed to make a budget proposal for this multi-site competition. The budget pr ...
- ZOJ 2314 - Reactor Cooling - [无源汇上下界可行流]
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=2314 The terrorist group leaded by ...
随机推荐
- js页面百分比缩放
<script> var docEl = document.documentElement, resizeEvt = 'orientationchange' in window ? 'or ...
- 【x】 PAT/BasicLevel_C++/1002. 写出这个数 (20).cpp
C++中的to_string()函数[C++11支持] - Bravo Yeung-羊较瘦之自留地 - CSDN博客https://blog.csdn.net/lzuacm/article/detai ...
- pip安装提示PermissionError: [WinError 5]错误问题解决
操作环境 Python3.6 + Winodws7 问题现象 新安装python3.6版本后使用pip安装第三方模块失败,报错信息如下: C:\Users\linyfeng>pip inst ...
- VC++ 获取系统时间、程序运行时间(精确到秒,毫秒)的五种方法
1.使用CTime类(获取系统当前时间,精确到秒) CString str; //获取系统时间 CTime tm; tm=CTime::GetCurrentTime();//获取系统日期 str=tm ...
- IIS 7配置需要注意的地方,RTX SDK运行必须Enable 32-bit Applications为True
简单说一下IIS 7的配置里那些需要注意的 首先每个网站都必须运行在特定得程序池上,程序池的配置中,关键的几个如下图: 1. .Net Framework Version : 这个设置的是你项目用到的 ...
- VS2012/VS2013配色方案
VS的配色方案下载地址 http://www.hanselman.com/blog/VisualStudioProgrammerThemesGallery.aspx 或者 http://studios ...
- FMS Dev Guide学习笔记(远程共享对象)
一.开发交互式的媒体应用程序1.共享对象(Shared objects) ----远程共享对象 在你创建一个远程共享对象之前,创建一个NetConnection对象并且连接到服务器.一旦你创建了 ...
- FMS Dev Guide学习笔记(SharedBall)
一.开发交互式的媒体应用程序1.共享对象(Shared objects) ----SharedBall example 这个SharedBall example创建了一个临时的远程共享对象.类似于多人 ...
- Oracle 导入大量数据
环境是这样的: 需要导入大量数据到Oracle,目前Oracle已建立索引和触发器了,导入的数据是树型结构,需要关联. 采用的方法是: 删除以前数据库的索引和触发器,用OracleBulkCopy批量 ...
- stringBuffer和stringBulider的区别
今天去面试了,问了最基础的stringBuffer和stringBulider的区别,我没有回答出来.之前就知道自己的基础很差,没想到这么差. 网上看了一下资料,stringBuffer和string ...