转自:https://github.com/keepsimplefocus/spark-sourcecodes-analysis/blob/master/markdowns/Spark%E8%AF%BB%E5%8F%96%E9%85%8D%E7%BD%AE.md

Spark读取配置

我们知道,有一些配置可以在多个地方配置。以配置executor的memory为例,有以下三种方式: 1. spark-submit的--executor-memory选项 2. spark-defaults.conf的spark.executor.memory配置 3. spark-env.sh的SPARK_EXECUTOR_MEMORY配置

同一个配置可以在多处设置,这显然会造成迷惑,不知道spark为什么到现在还保留这样的逻辑。 如果我分别在这三处对executor的memory设置了不同的值,最终在Application中生效的是哪个?

处理这一问题的类是SparkSubmitArguments。在其构造函数中就完成了从 『spark-submit --选项』、『spark-defaults.conf』、『spark-env.sh』中读取配置,并根据策略决定使用哪个配置。下面分几步来分析这个重要的构造函数。

Step0:读取spark-env.sh配置并写入环境变量中

SparkSubmitArguments的参数列表包含一个env: Map[String, String] = sys.env参数。该参数包含一些系统环境变量的值和从spark-env.sh中读取的配置值,如图是我一个demo中env值的部分截图

这一步之所以叫做Step0,是因为env的值在构造SparkSubmitArguments对象之前就确认,即spark-env.sh在构造SparkSubmitArguments对象前就读取并将配置存入env中。

Step1:创建各配置成员并赋空值

这一步比较简单,定义了所有要从『spark-submit --选项』、『spark-defaults.conf』、『spark-env.sh』中读取的配置,并赋空值。下面的代码展示了其中一部分 :

var master: String = null
var deployMode: String = null
var executorMemory: String = null
var executorCores: String = null
var totalExecutorCores: String = null
var propertiesFile: String = null
var driverMemory: String = null
var driverExtraClassPath: String = null
var driverExtraLibraryPath: String = null
var driverExtraJavaOptions: String = null
var queue: String = null
var numExecutors: String = null
var files: String = null
var archives: String = null
var mainClass: String = null
var primaryResource: String = null
var name: String = null
var childArgs: ArrayBuffer[String] = new ArrayBuffer[String]()
var jars: String = null
var packages: String = null
var repositories: String = null
var ivyRepoPath: String = null
var packagesExclusions: String = null
var verbose: Boolean = false ...

Step2:调用父类parse方法解析 spark-submit --选项

  try {
parse(args.toList)
} catch {
case e: IllegalArgumentException => SparkSubmit.printErrorAndExit(e.getMessage())
}

这里调用父类的SparkSubmitOptionParser#parse(List<String> args)。parse函数查找args中设置的--选项和值并解析为name和value,如--master yarn-client会被解析为值为--master的name和值为yarn-client的value。这之后调用SparkSubmitArguments#handle(MASTER, "yarn-client")进行处理。

来看看handle函数干了什么:


/** Fill in values by parsing user options. */
override protected def handle(opt: String, value: String): Boolean = {
opt match {
case NAME =>
name = value case MASTER =>
master = value case CLASS =>
mainClass = value case DEPLOY_MODE =>
if (value != "client" && value != "cluster") {
SparkSubmit.printErrorAndExit("--deploy-mode must be either \"client\" or \"cluster\"")
}
deployMode = value case NUM_EXECUTORS =>
numExecutors = value case TOTAL_EXECUTOR_CORES =>
totalExecutorCores = value case EXECUTOR_CORES =>
executorCores = value case EXECUTOR_MEMORY =>
executorMemory = value case DRIVER_MEMORY =>
driverMemory = value case DRIVER_CORES =>
driverCores = value case DRIVER_CLASS_PATH =>
driverExtraClassPath = value ... case _ =>
throw new IllegalArgumentException(s"Unexpected argument '$opt'.")
}
true
}

这个函数也很简单,根据参数opt及value,设置各个成员的值。接上例,parse中调用handle("--master", "yarn-client")后,在handle函数中,master成员将被赋值为yarn-client

注意,case MASTER中的MASTER的值在SparkSubmitOptionParser定义为--master,MASTER与其他值定义如下:

protected final String MASTER = "--master";

protected final String CLASS = "--class";
protected final String CONF = "--conf";
protected final String DEPLOY_MODE = "--deploy-mode";
protected final String DRIVER_CLASS_PATH = "--driver-class-path";
protected final String DRIVER_CORES = "--driver-cores";
protected final String DRIVER_JAVA_OPTIONS = "--driver-java-options";
protected final String DRIVER_LIBRARY_PATH = "--driver-library-path";
protected final String DRIVER_MEMORY = "--driver-memory";
protected final String EXECUTOR_MEMORY = "--executor-memory";
protected final String FILES = "--files";
protected final String JARS = "--jars";
protected final String KILL_SUBMISSION = "--kill";
protected final String NAME = "--name";
protected final String PACKAGES = "--packages";
protected final String PACKAGES_EXCLUDE = "--exclude-packages";
protected final String PROPERTIES_FILE = "--properties-file";
protected final String PROXY_USER = "--proxy-user";
protected final String PY_FILES = "--py-files";
protected final String REPOSITORIES = "--repositories";
protected final String STATUS = "--status";
protected final String TOTAL_EXECUTOR_CORES = "--total-executor-cores"; ...

总结来说,parse函数解析了spark-submit中的--选项,并根据解析出的name和value给SparkSubmitArguments的各个成员(例如master、deployMode、executorMemory等)设置值。

Step3:mergeDefaultSparkProperties加载spark-defaults.conf中配置

Step3读取spark-defaults.conf中的配置文件并存入sparkProperties中,sparkProperties将在下一步中发挥作用

//< 保存从spark-defaults.conf读取的配置
val sparkProperties: HashMap[String, String] = new HashMap[String, String]() //< 获取配置文件路径,若在spark-env.sh中设置SPARK_CONF_DIR,则以该值为准;否则为 $SPARK_HOME/conf/spark-defaults.conf
def getDefaultPropertiesFile(env: Map[String, String] = sys.env): String = {
env.get("SPARK_CONF_DIR")
.orElse(env.get("SPARK_HOME").map { t => s"$t${File.separator}conf" })
.map { t => new File(s"$t${File.separator}spark-defaults.conf")}
.filter(_.isFile)
.map(_.getAbsolutePath)
.orNull
} //< 读取spark-defaults.conf配置并存入sparkProperties中
private def mergeDefaultSparkProperties(): Unit = {
// Use common defaults file, if not specified by user
propertiesFile = Option(propertiesFile).getOrElse(Utils.getDefaultPropertiesFile(env))
// Honor --conf before the defaults file
defaultSparkProperties.foreach { case (k, v) =>
if (!sparkProperties.contains(k)) {
sparkProperties(k) = v
}
}
}

Step4:loadEnvironmentArguments确认每个配置成员最终值

先来看看代码(由于篇幅太长,省略了一部分)

  private def loadEnvironmentArguments(): Unit = {
master = Option(master)
.orElse(sparkProperties.get("spark.master"))
.orElse(env.get("MASTER"))
.orNull
driverExtraClassPath = Option(driverExtraClassPath)
.orElse(sparkProperties.get("spark.driver.extraClassPath"))
.orNull
driverExtraJavaOptions = Option(driverExtraJavaOptions)
.orElse(sparkProperties.get("spark.driver.extraJavaOptions"))
.orNull
driverExtraLibraryPath = Option(driverExtraLibraryPath)
.orElse(sparkProperties.get("spark.driver.extraLibraryPath"))
.orNull
driverMemory = Option(driverMemory)
.orElse(sparkProperties.get("spark.driver.memory"))
.orElse(env.get("SPARK_DRIVER_MEMORY"))
.orNull ... keytab = Option(keytab).orElse(sparkProperties.get("spark.yarn.keytab")).orNull
principal = Option(principal).orElse(sparkProperties.get("spark.yarn.principal")).orNull // Try to set main class from JAR if no --class argument is given
if (mainClass == null && !isPython && !isR && primaryResource != null) {
val uri = new URI(primaryResource)
val uriScheme = uri.getScheme() uriScheme match {
case "file" =>
try {
val jar = new JarFile(uri.getPath)
// Note that this might still return null if no main-class is set; we catch that later
mainClass = jar.getManifest.getMainAttributes.getValue("Main-Class")
} catch {
case e: Exception =>
SparkSubmit.printErrorAndExit(s"Cannot load main class from JAR $primaryResource")
}
case _ =>
SparkSubmit.printErrorAndExit(
s"Cannot load main class from JAR $primaryResource with URI $uriScheme. " +
"Please specify a class through --class.")
}
} // Global defaults. These should be keep to minimum to avoid confusing behavior.
master = Option(master).getOrElse("local[*]") // In YARN mode, app name can be set via SPARK_YARN_APP_NAME (see SPARK-5222)
if (master.startsWith("yarn")) {
name = Option(name).orElse(env.get("SPARK_YARN_APP_NAME")).orNull
} // Set name from main class if not given
name = Option(name).orElse(Option(mainClass)).orNull
if (name == null && primaryResource != null) {
name = Utils.stripDirectory(primaryResource)
} // Action should be SUBMIT unless otherwise specified
action = Option(action).getOrElse(SUBMIT)
}

我们单独以确定master值的那部分代码来说明,相关代码如下

master = Option(master)
.orElse(sparkProperties.get("spark.master"))
.orElse(env.get("MASTER"))
.orNull // Global defaults. These should be keep to minimum to avoid confusing behavior.
master = Option(master).getOrElse("local[*]")

确定master的值的步骤如下: 1. Option(master):若master值不为null,则以master为准;否则进入2。若master不为空,从上文的分析我们可以知道是从解析spark-submit --master选项得到的值 2..orElse(sparkProperties.get("spark.master")):若sparkProperties.get("spark.master")范围非null则以该返回值为准;否则进入3。从Step3中可以知道sparkProperties中的值都是从spark-defaults.conf中读取 3..orElse(env.get("MASTER")):若env.get("MASTER")返回非null,则以该返回值为准;否则进入4。env中的值从spark-env.sh读取而来 4. 若以上三处均为设置master,则取默认值local[*]

查看其余配置成员的值的决定过程也和master一致,稍有不同的是并不是所有配置都能在spark-defaults.conf、spark-env.sh和spark-submit选项中设置。但优先级还是一致的。

由此,我们可以得出结论,对于spark配置。若一个配置在多处设置,则优先级如下: spark-submit --选项 > spark-defaults.conf配置 > spark-env.sh配置 > 默认值

最后,附上流程图

Spark读取配置(转)的更多相关文章

  1. Spark参数配置

    转自:http://hadoop1989.com/2015/10/08/Spark-Configuration/ 一.Spark参数设置 二.查看Spark参数设置 三.Spark参数分类 四.Spa ...

  2. spark读取外部配置文件的方法

    spark读取外部配置文件的方法 spark-submit  --files /tmp/fileName /tmp/test.jar 使用spark提交时使用--files参数,spark会将将本地的 ...

  3. Spark 属性配置

    1.Spark1.x 属性配置方式 Spark属性提供了大部分应用程序的控制项,并且可以单独为每个应用程序进行配置. 在Spark1.0.0提供了3种方式的属性配置: SparkConf方式 Spar ...

  4. .NET Core采用的全新配置系统[1]: 读取配置数据

    提到“配置”二字,我想绝大部分.NET开发人员脑海中会立马浮现出两个特殊文件的身影,那就是我们再熟悉不过的app.config和web.config,多年以来我们已经习惯了将结构化的配置定义在这两个文 ...

  5. ASP.NET Core的配置(1):读取配置信息

    提到"配置"二字,我想绝大部分.NET开发人员脑海中会立马浮现出两个特殊文件的身影,那就是我们再熟悉不过的app.config和web.config,多年以来我们已经习惯了将结构化 ...

  6. 解决Spark读取Hive分区表出现Input path does not exist的问题

    假设这里出错的表为test表. 现象 Hive读取正常,不会报错,Spark读取就会出现: org.apache.hadoop.mapred.InvalidInputException: Input ...

  7. SQL2005SP4补丁安装时错误: -2146233087 MSDTC 无法读取配置信息。。。错误代码1603的解决办法

    是在安装slq2005sp3和sp4补丁的时候碰到的问题. 起先是碰到的错误1603的问题,但网上搜索的1603的解决办法都试过了,google也用了,外文论坛也读了,依然没有能解决这个问题. 其实一 ...

  8. JavaWEB中读取配置信息

    第一种方法是使用java.io和java.util包,缺点是路径的概念要清晰, 例子: Properties prop = new Properties(); InputStream in = get ...

  9. 无法读取配置节“protocolMapping”,因为它缺少节声明

    无法读取配置节“protocolMapping”,因为它缺少节声明 1.正常情况   :  Web.config文件中有protocolMapping节点, 发现在IIS部署时使用了.NET 2.0的 ...

随机推荐

  1. UTC时间和普通时间的区别

            UTC时间 [root@openstack01 ~]# timedatectl Local time: Sat 2018-08-18 23:04:24 CST Universal ti ...

  2. Jmeter(三)Test-Plan、Thread-Group

    思量再三,还是再记一会,看到技术群里边的讨论,真的是压力山大,学习一刻也不能耽搁.继续来回顾Jmeter的知识吧. Test-Plan,是所有Jmeter脚本的根节点,Test-Plan中包含名称.注 ...

  3. [UE4]Datasmith

    Datasmith 是帮助您将内容导入到虚幻引擎4中的一组工具和插件. 作为虚幻工作室产品的部分,Datasmith设计用于解决非游戏行业人士所面临的独特挑战,例如建筑.工程.建造.制造.实时培训等行 ...

  4. [UE4]射击产生弹孔:Spawn Decal At Location、Spawn Decal Attached

    Spawn Decal At Location.Spawn Decal Attached 在指定的位置生成一个材质贴上去 产生随意旋转角度

  5. [UE4]动态改变UniFormGird子控件的row属性

  6. MySQL数据库order by 奇慢无比

    今天遇到个奇葩的问题, sql 数据量很大 有where 和order by,不加order by 速度很快,加了就很慢 一.首先我们对这条sql执行查询计划: explain select t.or ...

  7. 使用命名管道的OVERLAPPED方式实现非阻塞模式编程 .

    命令管道是进程间通讯的一种常用方式,对于命令管道的介绍可以参考别的资料和书籍,这里推荐一个<VC++下命名管道编程的原理及实现>这篇博文,写得比较清楚.但是都是介绍了阻塞模式的编程,我这里 ...

  8. DOM内容操作和自定义、样式改变

    自定义 function 方法名或函数名(参数1,参数2,...) { 方法体: return返回值:(可不写) } function abc() { alert("123"); ...

  9. java synchronized 同步详解

    记下来,很重要. Java语言的关键字,当它用来修饰一个方法或者一个代码块的时候,能够保证在同一时刻最多只有一个线程执行该段代码. 一.当两个并发线程访问同一个对象object中的这个synchron ...

  10. CS229 6.11 Neurons Networks implements of self-taught learning

    在machine learning领域,更多的数据往往强于更优秀的算法,然而现实中的情况是一般人无法获取大量的已标注数据,这时候可以通过无监督方法获取大量的未标注数据,自学习( self-taught ...