suoi31 最近公共祖先2 (倍增lca)
根为r时x、y的公共祖先,就是lca(x,r),lca(x,y),lca(r,y)中深度最大的那一个,不要再在倍增的时候判来判去还判不对了...
#include<bits/stdc++.h>
#define pa pair<int,int>
#define CLR(a,x) memset(a,x,sizeof(a))
using namespace std;
typedef long long ll;
const int maxn=3e5+; inline ll rd(){
ll x=;char c=getchar();int neg=;
while(c<''||c>''){if(c=='-') neg=-;c=getchar();}
while(c>=''&&c<='') x=x*+c-'',c=getchar();
return x*neg;
} int eg[maxn*][],egh[maxn],ect;
int dfn[maxn][],tot;
int dep[maxn],fa[maxn][];
int N,M; inline void adeg(int a,int b){
eg[++ect][]=b;eg[ect][]=egh[a];egh[a]=ect;
} void dfs(int x){
for(int i=;fa[x][i]&&fa[fa[x][i]][i];i++){
fa[x][i+]=fa[fa[x][i]][i];
}
for(int i=egh[x];i;i=eg[i][]){
int b=eg[i][];if(b==fa[x][]) continue;
dep[b]=dep[x]+,fa[b][]=x;
dfs(b);
}
} int lca(int x,int y){
if(dep[x]<dep[y]) swap(x,y);
for(int i=log2(dep[x]-dep[y]+);i>=;i--){
if(fa[x][i]&&dep[fa[x][i]]>=dep[y])
x=fa[x][i];
}
if(x==y) return x;
for(int i=log2(dep[x]);i>=;i--){
if(fa[x][i]&&fa[y][i]&&fa[x][i]!=fa[y][i])
x=fa[x][i],y=fa[y][i];
}
return fa[x][];
} int main(){
//freopen("","r",stdin);
int i;
N=rd(),M=rd();
for(i=;i<N;i++){
int a=rd(),b=rd();
adeg(a,b);adeg(b,a);
}
dep[]=;dfs();
for(i=;i<=M;i++){
int r=rd(),x=rd(),y=rd();
int a=lca(x,y),b=lca(x,r),c=lca(y,r);
int mm=max(dep[a],max(dep[b],dep[c]));
if(dep[a]==mm) printf("%d\n",a);
else if(dep[b]==mm) printf("%d\n",b);
else printf("%d\n",c);
}
return ;
}
suoi31 最近公共祖先2 (倍增lca)的更多相关文章
- 图论--最近公共祖先问题(LCA)模板
最近公共祖先问题(LCA)是求一颗树上的某两点距离他们最近的公共祖先节点,由于树的特性,树上两点之间路径是唯一的,所以对于很多处理关于树的路径问题的时候为了得知树两点的间的路径,LCA是几乎最有效的解 ...
- [luogu3379]最近公共祖先(树上倍增求LCA)
题意:求最近公共祖先. 解题关键:三种方法,1.st表 2.倍增法 3.tarjan 此次使用倍增模板(最好采用第一种,第二种纯粹是习惯) #include<cstdio> #includ ...
- 最近公共祖先问题(LCA)的几种实现方式
LCA也是很经典的内容了,我这个蒟蒻居然今天才开始弄QAQ 我太弱啦! 照例先上定义——————转自维基百科 在图论和计算机科学中,最近公共祖先是指在一个树或者有向无环图中同时拥有v和w作为后代的最深 ...
- caioj 1236 最近公共祖先 树倍增算法模版 倍增
[题目链接:http://caioj.cn/problem.php?id=1236][40eebe4d] 代码:(时间复杂度:nlogn) #include <iostream> #inc ...
- 【HIHOCODER 1067】最近公共祖先·二(LCA)
描述 上上回说到,小Hi和小Ho用非常拙劣--或者说粗糙的手段山寨出了一个神奇的网站,这个网站可以计算出某两个人的所有共同祖先中辈分最低的一个是谁.远在美国的他们利用了一些奇妙的技术获得了国内许多人的 ...
- hihoCoder #1067 : 最近公共祖先·二 [ 离线LCA tarjan ]
传送门: #1067 : 最近公共祖先·二 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 上上回说到,小Hi和小Ho用非常拙劣——或者说粗糙的手段山寨出了一个神奇的网站 ...
- [HIHO1062] 最近公共祖先·一(lca, 并查集, 二分, 神trick)
题目链接:http://hihocoder.com/problemset/problem/1062 题意裸,有个trick,导致我当年做的时候一直在WA... 那就是出现这种没有出现在关系中,但是依然 ...
- 最近公共祖先算法LCA笔记(树上倍增法)
Update: 2019.7.15更新 万分感谢[宁信]大佬,认认真真地审核了本文章,指出了超过五处错误捂脸,太尴尬了. 万分感谢[宁信]大佬,认认真真地审核了本文章,指出了超过五处错误捂脸,太尴尬了 ...
- 最近公共祖先(LCA)问题
目录 最近公共祖先 1.向上标记法 2.树上倍增法 3.Tarjan算法 最近公共祖先 定义:给定一颗有根树,若结点 z 既是 x 的祖先,也是 y 的祖先,则称 z 是 x,y 的公共祖先.在 x, ...
随机推荐
- SqlServer执行大的数据库脚本出错解决方法
如果执行线上项目拷下来sqlserver的.sql的数据库脚本文件,如果文件较大时,那么就会报错内存不足之类的. 这时可以在命令提示符使用命令来执行脚本文件.切记,执行前先改一下数据库存放位置! 命令 ...
- Ruby知识总结-一般变量+操作符+if+数组和哈希
ruby入门掌握其实很简单,下面对我司主要使用的部分入门做一个简单的归纳总结: 本文的文章结构: 1.变量 2.操作符 3.if~else~end .unless 4.数组(Array) 5.哈希(H ...
- 【CobaltStrike】CobaltStrike简介与使用
CobaltStrike简介与使用 0x00 简介 1. 什么是CobaltStrike?可以用来做什么? CobatStrike是一款基于java编写的全平台多方协同后渗透攻击框架.CobaltSt ...
- Python3入门(五)——高级特性
一.切片 对于取指定索引的值,python提供了切片来简化傻傻的循环 list2 = ["apple", "water", "banana" ...
- 20155229《网络对抗技术》Exp5:MSF基础应用
实验内容 本实践目标是掌握metasploit的基本应用方式,重点常用的三种攻击方式的思路.具体需要完成: 一个主动攻击实践,如ms08-067; 一个针对浏览器的攻击,如ms11-050: 一个针对 ...
- Java中枚举的写法和用法
在公司代码中,用了一大堆的枚举,看得我好懵逼.下面开始看看枚举怎么写和怎么用. 一.枚举的写法 关于枚举的写法,网上好多这方面的知识.这里直接贴一个我自己写的枚举类的代 ...
- mfc 动态为控件添加事件2
重载窗口过程 为动态控件绑定事件 一.重载窗口过程处理函数 CWnd::WindowProc virtual LRESULT WindowProc( UINT message, WPARAM wPar ...
- 【HNOI2016】网络
题面 题解 考虑整体二分. 定义整体二分函数solve(l, r, ql, qr)表示操作权值在\([l, r]\)中,对\([ql, qr]\)的询问进行二分. 这样的话check就会很简单,先按照 ...
- Bluedroid协议栈BTU线程处理HCI数据流程分析
在蓝牙enable的过程中会进行多个线程的创建以及将线程与队列进行绑定的工作.该篇文章主要分析一下处理hci数据这个 线程. void BTU_StartUp(void) { ... btu_bta_ ...
- setBit testBit权限管理
1.jdk7文档解释 public boolean testBit(int n) Returns true if and only if the designated bit is set. (Com ...