BZOJ3165: [Heoi2013]Segment(李超线段树)
题意
Sol
李超线段树板子题。具体原理就不讲了。
一开始自己yy着写差点写自闭都快把叉积搬出来了。。。
后来看了下litble的写法才发现原来可以写的这么清晰简洁Orz
#include<bits/stdc++.h>
#define pdd pair<double, double>
#define MP make_pair
#define fi first
#define se second
using namespace std;
const int MAXN = 1e6 + 10, Lim = 1e9;
template <typename A, typename B> inline bool chmin(A &a, B b){if(a > b) {a = b; return 1;} return 0;}
template <typename A, typename B> inline bool chmax(A &a, B b){if(a < b) {a = b; return 1;} return 0;}
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N = 39989, M;
int ls[MAXN], rs[MAXN], root, cnt, tot;
pdd mx[MAXN];
struct Line {
double k, b;
int id;
}s[MAXN];
pdd get(int x0, int y0, int x1, int y1) {
double k = (double) (y1 - y0) / (x1 - x0),
b = (double) y0 - k * x0;
return {k, b};
}
double calc(Line line, int x) {
return line.k * x + line.b;
}
double GetPoint(Line a, Line b) {
return (b.b - a.b) / (a.k - b.k);
}
pdd ret;
void Query(int k, int l, int r, int p) {//fi: val se: id
if(chmax(ret.fi, calc(s[k], p))) ret.se = s[k].id;
if(l == r) return ;
int mid = l + r >> 1;
if(p <= mid) Query(ls[k], l, mid, p);
else Query(rs[k], mid + 1, r, p);
}
void Modify(int &k, int l, int r, int ql, int qr, Line seg) {
if(!k) k = ++tot;
int mid = l + r >> 1;
if(ql <= l && r <= qr) {
if(!s[k].id) {s[k] = seg; return ;}
int p = GetPoint(s[k], seg);
int pl = calc(s[k], l), pr = calc(s[k], r), nl = calc(seg, l), nr = calc(seg, r);
if(pl > nl && pr > nr) return ;
if(pl < nl && pr < nr) {s[k] = seg; return ;}
if(pl < nl) {
if(p > mid) Modify(rs[k], mid + 1, r, mid + 1, r, s[k]), s[k] = seg;
else Modify(ls[k], l, mid, l, mid, seg);
} else {
if(p > mid) Modify(rs[k], mid + 1, r, mid + 1, r, seg);
else Modify(ls[k], l, mid, l, mid, s[k]), s[k] = seg;
}
return ;
}
if(l == r) return ;
if(ql <= mid) Modify(ls[k], l, mid, ql, qr, seg);
if(qr > mid) Modify(rs[k], mid + 1, r, ql, qr, seg);
}
signed main() {
M = read();
for(int i = 1, lastans = 0; i <= M; i++) {
int opt = read();
if(!opt) {
int k = read(), x = (k + lastans - 1) % 39989 + 1;
ret.fi = 0; ret.se = 0;
Query(root, 1, N, x);
printf("%d\n", lastans = (mx[x].fi > ret.fi ? mx[x].se : ret.se));
} else {
int x0 = (read() + lastans - 1) % 39989 + 1, y0 = (read() + lastans - 1) % Lim + 1,
x1 = (read() + lastans - 1) % 39989 + 1, y1 = (read() + lastans - 1) % Lim + 1;
if(x0 > x1) swap(x0, x1), swap(y0, y1);
if(x0 == x1 && chmax(mx[x0].fi, max(y0, y1))) mx[x0].se = i;
pdd li = get(x0, y0, x1, y1);
Modify(root, 1, N, x0, x1, {li.fi, li.se, ++cnt});
}
}
return 0;
}
BZOJ3165: [Heoi2013]Segment(李超线段树)的更多相关文章
- BZOJ3165[Heoi2013]Segment——李超线段树
题目描述 要求在平面直角坐标系下维护两个操作: 1.在平面上加入一条线段.记第i条被插入的线段的标号为i. 2.给定一个数k,询问与直线 x = k相交的线段中,交点最靠上的线段的编号. 输入 第一行 ...
- 【BZOJ-3165】Segment 李超线段树(标记永久化)
3165: [Heoi2013]Segment Time Limit: 40 Sec Memory Limit: 256 MBSubmit: 368 Solved: 148[Submit][Sta ...
- Luogu P4097 [HEOI2013]Segment 李超线段树
题目链接 \(Click\) \(Here\) 李超线段树的模板.但是因为我实在太\(Naive\)了,想象不到实现方法. 看代码就能懂的东西,放在这里用于复习. #include <bits/ ...
- 2019.02.11 bzoj3165: [Heoi2013]Segment(线段树)
传送门 题意简述:要求支持两种操作: 插入一条线段. 询问与直线x=kx=kx=k相交的线段中,交点最靠上的线段的编号. 思路: 直接上李超线段树即可. 代码: #include<bits/st ...
- 【BZOJ 3165】 [Heoi2013]Segment 李超线段树
所谓李超线段树就是解决此题一类的问题(线段覆盖查询点最大(小)),把原本计算几何的题目变成了简单的线段树,巧妙地结合了线段树的标记永久化与标记下传,在不考虑精度误差的影响下,打法应该是这样的. #in ...
- P4097 [HEOI2013]Segment 李超线段树
$ \color{#0066ff}{ 题目描述 }$ 要求在平面直角坐标系下维护两个操作: 在平面上加入一条线段.记第 i 条被插入的线段的标号为 i 给定一个数 k,询问与直线 x = k 相交的线 ...
- BZOJ.3165.[HEOI2013]Segment(李超线段树)
BZOJ 洛谷 对于线段,依旧是存斜率即可. 表示精度误差一点都不需要管啊/托腮 就我一个人看成了mod(10^9+1)吗.. //4248kb 892ms #include <cstdio&g ...
- Segment 李超线段树
题目大意: 要求在平面直角坐标系下维护两个操作: 1.在平面上加入一条线段.记第 i 条被插入的线段的标号为 i 2.给定一个数 k,询问与直线 x = k 相交的线段中,交点最靠上的线段的编号. 若 ...
- 【洛谷P4097】Segment 李超线段树
题目大意:维护一个二维平面,给定若干条线段,支持询问任意整数横坐标处对应的纵坐标最靠上的线段的 id,相同高度取 id 值较小的,强制在线. 题解:初步学习了李超线段树.李超线段树的核心思想在于通过标 ...
随机推荐
- mybatis四大接口之 ParameterHandler
1. 继承结构 只有一个默认的实现类 2. ParameterHandler 获取参数对象: 设置参数对象: public interface ParameterHandler { Object g ...
- select2插件使用小记
插件官网:https://select2.github.io/examples.html 页面引入: // 页面顶部 <link rel="stylesheet" type= ...
- Java - 阅读与查找
WebSites http://www.importnew.com/ https://www.java-tips.org/ http://www.javaworld.com/ http://www.p ...
- Docker - 基础讲义
Docker Docker - 官网 Docker - Hub GitHub - Docker dockerinfo Docker中文社区 Docker入门教程 Docker从入门到实践 虚拟化技术 ...
- [0day]微软XP系统右键菜单任意DLL却持
作者:K8哥哥只要在DLL上右键就被却持 任意DLL名称 任意位置 (其实是EXPLOR) 这个漏洞早已存在,08年的时候就发现了(当时编译某个DLL源码) 在DLL上右键看属性的时候崩溃了,当时就想 ...
- Java java.lang.ExceptionInInitializerError 错误解决方案
引起 java.lang.ExceptionInInitializerError 错误的原因是:在类的初始化时,出错.也就是说,在加载类时,执行static的属性.方法块时,出错了. 比如 publi ...
- hander消息机制原理(looper轮询监听机制)
基本原理 线程中调用Handler.sendMsg()方法(参数是Message对象),将需要Main线程处理的事件 添加到Main线程的MessageQueue中,Main线程通过MainLoope ...
- vue中请求本地的json数据
为什么要请求本地的数据?模拟后台的请求数据,验证页面的逻辑是否存在问题,抛开后台提前开发等. 常用的说来有:jq的方式 约等于 axios的方式,vuex状态管理的方式 个人认为最好用的就是jq的方式 ...
- Apater适配器模式(结构型模式)
1.概要 适配:即在不改变原有实现的基础上,将原先不适合的接口转换成适合的接口. what is Apater?适配,这个概念在生活中无处不在,比如你的iphone 4手机充电器坏了,这是时候只有一个 ...
- 九、将cs文件快速的转换成可执行文件和响应文件(配置编译开关的文件)
1.将包含多个类型的源代码文件转换为可以部署的文件.有如下Program.cs的文件,代码如下: public sealed class Program { public static void Ma ...