Proving Equivalences

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 9296    Accepted Submission(s): 3281

Problem Description
Consider the following exercise, found in a generic linear algebra textbook.

Let A be an n × n matrix. Prove that the following statements are equivalent:

1. A is invertible.
2. Ax = b has exactly one solution for every n × 1 matrix b.
3. Ax = b is consistent for every n × 1 matrix b.
4. Ax = 0 has only the trivial solution x = 0.

The typical way to solve such an exercise is to show a series of implications. For instance, one can proceed by showing that (a) implies (b), that (b) implies (c), that (c) implies (d), and finally that (d) implies (a). These four implications show that the four statements are equivalent.

Another way would be to show that (a) is equivalent to (b) (by proving that (a) implies (b) and that (b) implies (a)), that (b) is equivalent to (c), and that (c) is equivalent to (d). However, this way requires proving six implications, which is clearly a lot more work than just proving four implications!

I have been given some similar tasks, and have already started proving some implications. Now I wonder, how many more implications do I have to prove? Can you help me determine this?

 
Input
On the first line one positive number: the number of testcases, at most 100. After that per testcase:

* One line containing two integers n (1 ≤ n ≤ 20000) and m (0 ≤ m ≤ 50000): the number of statements and the number of implications that have already been proved.
* m lines with two integers s1 and s2 (1 ≤ s1, s2 ≤ n and s1 ≠ s2) each, indicating that it has been proved that statement s1 implies statement s2.

 
Output
Per testcase:

* One line with the minimum number of additional implications that need to be proved in order to prove that all statements are equivalent.

 
Sample Input
2
4 0
3 2
1 2
1 3
 
Sample Output
4
2
 
Source
 
分析:
给你一个有向图,问你至少添加多少条边,使得该图变成一个强连通图
特判情况:
m=0,没有边,那么至少添加n条边
sig=1,该图本来就是强连通图,则输出0
tarjan求强连通分量,同时染色缩点得到新图
统计新图入度为0和出度为0的点的个数
输出最大值,就是我们至少需要添加的边的条数
原因:
缩点的原因:
强连通分量内部是互相可达的,我们只有把这些强连通分量缩成一个点,然后使得这些点构成的新图变成强连通图就可以了
所以问题得到关键是:
怎么使得新图变成强连通图(新图中不存在强连通分量,本身也不是强连通图)
有向图没有构成环的话,肯定存在链
把链头和链尾安装某个方向连接起来
链就变成环了
所以看看链头和链尾的个数就好(即出度为0和入度为0的点)
输出链头和链尾个数的最大值
为什么是最大值?
因为如果连最小值条边的话,新图不一定能够变成强连通图
 
code:
#include<stdio.h>
#include<iostream>
#include<math.h>
#include<string.h>
#include<set>
#include<map>
#include<list>
#include<math.h>
#include<queue>
#include<algorithm>
using namespace std;
typedef long long LL;
#define INF 0x7fffffff
int mon1[]= {,,,,,,,,,,,,};
int mon2[]= {,,,,,,,,,,,,};
int dir[][]= {{,},{,-},{,},{-,}}; int getval()
{
int ret();
char c;
while((c=getchar())==' '||c=='\n'||c=='\r');
ret=c-'';
while((c=getchar())!=' '&&c!='\n'&&c!='\r')
ret=ret*+c-'';
return ret;
} #define max_v 20005
#define mem(a,x) memset(a,x,sizeof(a))
int vis[max_v];
int dfn[max_v];
int low[max_v];
int color[max_v];
int stk[max_v];
int indgree[max_v];
int outdgree[max_v];
vector<int> G[max_v];
int n,m;
int sig,cnt,sp; void init()
{
mem(indgree,);
mem(outdgree,);
mem(vis,);
mem(dfn,);
mem(low,);
mem(color,);
mem(stk,);
for(int i=;i<=n;i++)
G[i].clear();
sig=;
cnt=;
sp=-;
} void tarjan(int u)
{
vis[u]=;
low[u]=dfn[u]=cnt++;
stk[++sp]=u; for(int j=;j<G[u].size();j++)
{
int v=G[u][j];
if(vis[v]==)
tarjan(v);
if(vis[v]==)
low[u]=min(low[u],low[v]);
}
if(low[u]==dfn[u])
{
sig++;
do
{
vis[stk[sp]]=-;
color[stk[sp]]=sig;
}while(stk[sp--]!=u);
}
}
int main()
{
int t;
int x,y;
cin>>t;
while(t--)
{
scanf("%d %d",&n,&m);
if(m==)
{
printf("%d\n",n);
continue;
}
init();
for(int i=;i<=m;i++)
{
scanf("%d %d",&x,&y);
if(x==y)
continue;
if(count(G[x].begin(),G[x].end(),y)==)
G[x].push_back(y);
} for(int i=;i<=n;i++)
{
if(vis[i]==)
tarjan(i);
} if(sig==)
{
printf("0\n");
continue;
}
// printf("sig=%d\n",sig);
for(int i=;i<=n;i++)
{
for(int j=;j<G[i].size();j++)
{
int v=G[i][j];
if(color[i]!=color[v])
{
indgree[color[v]]++;
outdgree[color[i]]++;
}
}
}
LL ans=,ans1=,ans2=;
for(int i=;i<=sig;i++)
{
if(indgree[i]==)
ans1++;
if(outdgree[i]==)
ans2++;
}
ans=max(ans1,ans2);
printf("%d\n",ans);
}
return ;
}
/*
给你一个有向图,问你至少添加多少条边,使得该图变成一个强连通图 特判情况:
m=0,没有边,那么至少添加n条边
sig=1,该图本来就是强连通图,则输出0 tarjan求强连通分量,同时染色缩点得到新图
统计新图入度为0和出度为0的点的个数
输出最大值,就是我们至少需要添加的边的条数 原因:
缩点的原因:
强连通分量内部是互相可达的,我们只有把这些强连通分量缩成一个点,然后使得这些点构成的新图变成强连通图就可以了
所以问题得到关键是:
怎么使得新图变成强连通图(新图中不存在强连通分量,本身也不是强连通图)
有向图没有构成环的话,肯定存在链
把链头和链尾安装某个方向连接起来
链就变成环了
所以看看链头和链尾的个数就好(即出度为0和入度为0的点)
输出链头和链尾个数的最大值 为什么是最大值?
因为如果连最小值条边的话,新图不一定能够变成强连通图 */

HDU 2767 Proving Equivalences(至少增加多少条边使得有向图变成强连通图)的更多相关文章

  1. 2767 Proving Equivalences 至少加几条边让全部图变成强连通模板题

    #include<stdio.h> #include<string.h> #define N 21000 struct node { int u,v,next; }bian[N ...

  2. HDU 2767 Proving Equivalences (强联通)

    pid=2767">http://acm.hdu.edu.cn/showproblem.php?pid=2767 Proving Equivalences Time Limit: 40 ...

  3. hdu 2767 Proving Equivalences

    Proving Equivalences 题意:输入一个有向图(强连通图就是定义在有向图上的),有n(1 ≤ n ≤ 20000)个节点和m(0 ≤ m ≤ 50000)条有向边:问添加几条边可使图变 ...

  4. HDU 2767 Proving Equivalences(强连通 Tarjan+缩点)

    Consider the following exercise, found in a generic linear algebra textbook. Let A be an n × n matri ...

  5. HDU 2767 Proving Equivalences (Tarjan)

    Proving Equivalences Time Limit : 4000/2000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other ...

  6. hdu 2767 Proving Equivalences 强连通缩点

    给出n个命题,m个推导,问最少添加多少条推导,能够使全部命题都能等价(两两都能互推) 既给出有向图,最少加多少边,使得原图变成强连通. 首先强连通缩点,对于新图,每一个点都至少要有一条出去的边和一条进 ...

  7. hdu 2767 Proving Equivalences(tarjan缩点)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2767 题意:问最少加多少边可以让所有点都相互连通. 题解:如果强连通分量就1个直接输出0,否者输出入度 ...

  8. HDU 2767:Proving Equivalences(强连通)

    题意: 一个有向图,问最少加几条边,能让它强连通 方法: 1:tarjan 缩点 2:采用如下构造法: 缩点后的图找到所有头结点和尾结点,那么,可以这么构造:把所有的尾结点连一条边到头结点,就必然可以 ...

  9. hdoj 2767 Proving Equivalences【求scc&&缩点】【求最少添加多少条边使这个图成为一个scc】

    Proving Equivalences Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

随机推荐

  1. jq插件写法

    如今做web开发,jQuery 几乎是必不可少的,同时jquery插件也是不断的被大家所熟知,以及运用.最近在搞这个jquery插件,发现它的牛逼之处,所以讲一讲jQuery插件的写法以及使用  (f ...

  2. 【java基础】基础小总结

    学习java,将自己的心得或总结写下来吧. Java 标识符 标识符由字母,下划线(_),美元符($)和数字组成. 标识符不能以数字开头. 标识符不能使java关键字. 标识符对大小写敏感. Java ...

  3. OSGI企业应用开发(八)整合Spring和Mybatis框架(一)

    到目前为止,我们已经学习了如何使用Blueprint將Spring框架整合到OSGI应用中,并学习了Blueprint&Gemini Blueprint的一些使用细节.本篇文章开始,我们將My ...

  4. 8 张脑图入门 JavaScript - 基础面试不倒

    8 张脑图入门 JavaScript - 基础面试不倒 转载请注明出处 第一:JavaScript 的变量 第二:JavaScript 运算符 第三:JavaScript 数组 第四:JavaScri ...

  5. 【jdk源码3】HashMap源码学习

    可以毫不夸张的说,HashMap是容器类中用的最频繁的一个,而Java也对它进行优化,在jdk1.7及以前,当将相同Hash值的对象以key的身份放到HashMap中,HashMap的性能将由O(1) ...

  6. 基于纤程(Fiber)实现C++异步编程库(一):原理及示例

    纤程(Fiber)和协程(coroutine)是差不多的概念,也叫做用户级线程或者轻线程之类的.Windows系统提供了一组API用户创建和使用纤程,本文中的库就是基于这组API实现的,所以无法跨平台 ...

  7. Express4.X中的bin/www是作什么用的?为什么没有后缀?

    使用Express4.X的同学会发现,相比Express3.X初始化项目时多了一个bin目录,并且下面还有一个www文件,那么它们有什么用呢? 在Express 3.x中集成了很多中间件,www和ap ...

  8. CSS盒模型详解(图文教程)

    本文最初发表于博客园,并在GitHub上持续更新.以下是正文. 盒子模型 前言 盒子模型,英文即box model.无论是div.span.还是a都是盒子. 但是,图片.表单元素一律看作是文本,它们并 ...

  9. XML与DataSet的相互转换

    转:https://www.cnblogs.com/kunEssay/p/6168824.html XML与DataSet的相互转换的类 一.XML与DataSet的相互转换的类 using Syst ...

  10. SQL2005中的事务与锁定(九)-(1)- 转载

    ------------------------------------------------------------------------ -- Author : HappyFlyStone - ...