骑士 HYSBZ - 1040(基环树+树形dp)
Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英。他们劫富济贫,惩恶扬善,受到社会各
界的赞扬。最近发生了一件可怕的事情,邪恶的Y国发动了一场针对Z国的侵略战争。战火绵延五百里,在和平环境
中安逸了数百年的Z国又怎能抵挡的住Y国的军队。于是人们把所有的希望都寄托在了骑士团的身上,就像期待有一
个真龙天子的降生,带领正义打败邪恶。骑士团是肯定具有打败邪恶势力的能力的,但是骑士们互相之间往往有一
些矛盾。每个骑士都有且仅有一个自己最厌恶的骑士(当然不是他自己),他是绝对不会与自己最厌恶的人一同出
征的。战火绵延,人民生灵涂炭,组织起一个骑士军团加入战斗刻不容缓!国王交给了你一个艰巨的任务,从所有
的骑士中选出一个骑士军团,使得军团内没有矛盾的两人(不存在一个骑士与他最痛恨的人一同被选入骑士军团的
情况),并且,使得这支骑士军团最具有战斗力。为了描述战斗力,我们将骑士按照1至N编号,给每名骑士一个战
斗力的估计,一个军团的战斗力为所有骑士的战斗力总和。
Input
第一行包含一个正整数N,描述骑士团的人数。接下来N行,每行两个正整数,按顺序描述每一名骑士的战斗力
和他最痛恨的骑士。
Output
应包含一行,包含一个整数,表示你所选出的骑士军团的战斗力。
Sample Inpu
10 2
20 3
30 1
Sample Output
30
Hint
N ≤ 1 000 000,每名骑士的战斗力都是不大于 1 000 000的正整数。
基环树模板题
#include <bits/stdc++.h>
#define mem(a, b) memset(a, b, sizeof(a))
#define rap(i, a, n) for(int i=a; i<=n; i++)
#define rep(i, a, n) for(int i=a; i<n; i++)
#define lap(i, a, n) for(int i=n; i>=a; i--)
#define lep(i, a, n) for(int i=n; i>a; i--)
#define rd(a) scanf("%d", &a)
#define rlld(a) scanf("%lld", &a)
#define rc(a) scanf("%c", &a)
#define rs(a) scanf("%s", a)
#define pd(a) printf("%d\n", a);
#define plld(a) printf("%lld\n", a);
#define pc(a) printf("%c\n", a);
#define ps(a) printf("%s\n", a);
#define MOD 2018
#define LL long long
#define ULL unsigned long long
using namespace std;
const int maxn = 1e6+, INF = 0x7fffffff;
int n, cnt, not_pass, s, t;
LL a[maxn], dp[maxn][];
int vis[maxn], head[maxn];
struct node
{
int u, v, next;
}Node[maxn<<]; void add_(int u, int v)
{
Node[cnt].u = u;
Node[cnt].v = v;
Node[cnt].next = head[u];
head[u] = cnt++;
} void add(int u, int v)
{
add_(u, v);
add_(v, u);
} void dfs(int u, int pa)
{
vis[u] = ;
for(int i=head[u]; i!=-; i=Node[i].next)
{
node e = Node[i];
if(e.v == pa) continue;
if(!vis[e.v]) dfs(e.v, u);
else
{
not_pass = i;
s = u;
t = e.v;
}
}
} void treedp(int u, int fa)
{
dp[u][] = a[u], dp[u][] = ;
for(int i=head[u]; i!=-; i=Node[i].next)
{
node e = Node[i];
if(e.v == fa) continue;
if(i == not_pass || i == (not_pass^)) continue;
treedp(e.v, u);
dp[u][] += max(dp[e.v][], dp[e.v][]);
dp[u][] += dp[e.v][];
}
} void init()
{
mem(head, -);
mem(vis, );
cnt = ;
} int main()
{
init();
rd(n);
int v;
rap(i, , n)
{
rlld(a[i]), rd(v);
add(i, v);
}
LL res = ;
rap(i, , n)
{
if(vis[i]) continue;
dfs(i, -);
treedp(s, -);
LL tmp = dp[s][];
treedp(t, -);
res += max(tmp, dp[t][]);
}
plld(res); return ;
}
骑士 HYSBZ - 1040(基环树+树形dp)的更多相关文章
- 洛谷 P1453 城市环路 ( 基环树树形dp )
题目链接 题目背景 一座城市,往往会被人们划分为几个区域,例如住宅区.商业区.工业区等等.B市就被分为了以下的两个区域--城市中心和城市郊区.在着这两个区域的中间是一条围绕B市的环路,环路之内便是B市 ...
- BZOJ 1040 骑士 基环树 树形DP
题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1040 题目大意: Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫 ...
- BZOJ 1040 [ZJOI2008]骑士 (基环树+树形DP)
<题目链接> 题目大意: Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各界的赞扬.最近发生了一件可怕的事情,邪恶的Y国发动了一场针对Z国的 ...
- bzoj 1040: [ZJOI2008]骑士【基环树+树形dp】
没考虑可以连着两个不选--直接染色了 实际上是基环森林,对于每棵基环树,dfs找出一个环边,然后断掉这条边,分别对这条边的两端点做一边treedp,取max加进答案里 treedp是设f[u]为选u点 ...
- BZOJ 1040:[ZJOI2008]骑士(环套外向树+树形DP)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1040 [题目大意] 给出环套外向树森林,求最大权独立集. [题解] 我们对于每个连通块 ...
- HDU6403 Card Game【基环树 + 树形DP】
HDU6403 Card Game 题意: 给出\(N\)张卡片,卡片正反两面都有数字,现在要翻转一些卡片使得所有卡片的正面的值各不相同,问最小翻转次数和最小翻转情况下的不同方案数 \(N\le 10 ...
- day 2 下午 骑士 基环树+树形DP
#include<iostream> #include<cstdio> #include<cstring> #include<cstdlib> #inc ...
- BZOJ2878 [Noi2012]迷失游乐园 【基环树 + 树形dp + 期望dp】
题目链接 BZOJ2878 题解 除了实现起来比较长,思维难度还是挺小的 观察数据范围发现环长不超过\(20\),而我们去掉环上任何一个点就可以形成森林 于是乎我们枚举断掉的点,然后只需求出剩余每个点 ...
- 【BZOJ-3572】世界树 虚树 + 树形DP
3572: [Hnoi2014]世界树 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 1084 Solved: 611[Submit][Status ...
随机推荐
- 汽车为什么选择了CAN总线技术?
汽车为什么选择了CAN总线技术? 围绕“汽车为什么选择了CAN总线技术?汽车CAN总线技术到底是怎么一回事?采用汽车CAN总线技术有哪些优点?汽车总线的发展趋势”等问题作了一个浅短的介绍: 1. 汽车 ...
- Debuggex – 超好用的正则表达式可视化调试工具
正则表达式通常被用来检索或替换符合某个模式的文本内容,编写正则是开发人员的必备技能.简单的正则表达式一下就能看懂含义,但是复杂的正则理解起来就很困难了.有了这款可视化的正则调试工具,以后编写正则表达式 ...
- pdflush机制
在做进程安全监控的时候,拍脑袋决定的,如果发现一个进程在D状态时,即TASK_UNINTERRUPTIBLE(不可中断的睡眠状态),时间超过了8min,就将系统panic掉.恰好DB组做日志时,将整个 ...
- Luogu P2341 [HAOI2006]受欢迎的牛
这道题应该也是经典的SCC题了吧 印象中不知道在在班里上课的时候在紫书,ACM竞赛的那些书上看到多少次(有点奇怪) 首先思路很明显,就是要找出有多少个点,以它们为起点可以遍历整个图 首先考虑一种情况, ...
- uboot启动过程理解
对于2440而言,启动的方式不多.一般就是外界一个NAND FLASH ,2440内部有个NAND FLASH Controller,会自动把NAND FLASH的前4K拷贝到2440的片内SRAM. ...
- 28 个 C/C++ 开源 JSON 程序库性能及标准符合程度评测
28 个 C/C++ 开源 JSON 程序库性能及标准符合程度评测 坊间有非常多的 C/C++ JSON 库,怎么选择是一个难题. [nativejson-benchmark](https://git ...
- Bluedroid协议栈BTU线程处理HCI数据流程分析
在蓝牙enable的过程中会进行多个线程的创建以及将线程与队列进行绑定的工作.该篇文章主要分析一下处理hci数据这个 线程. void BTU_StartUp(void) { ... btu_bta_ ...
- Spring+SpringMVC+MyBatis整合优化篇
优化篇 Spring+SpringMVC+MyBatis+easyUI整合优化篇(一)System.out.print与Log Spring+SpringMVC+MyBatis+easyUI整合优化篇 ...
- Deferred Shading 延迟着色(翻译)
原文地址:https://en.wikipedia.org/wiki/Deferred_shading 在3D计算机图形学领域,deferred shading 是一种屏幕空间着色技术.它被称为Def ...
- (1) English Learning
1. no-brainer 不必花脑筋的事物 This tool is really no-brainer that almost everyone can use it. 这个工具太简单用了,不会 ...