Power of Matrix

Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu

Appoint description: 
System Crawler  (2015-03-15)

Description

 

Problem B : Power of Matrix

Time limit: 10 seconds

Consider an n-by-n matrix A. We define Ak = A * A * ... * A (k times). Here, * denotes the usual matrix multiplication.

You are to write a program that computes the matrix A + A2 + A3 + ... + Ak.

Example

Suppose A = . Then A2 =  = , thus:

Such computation has various applications. For instance, the above example actually counts all the paths in the following graph:

Input

Input consists of no more than 20 test cases. The first line for each case contains two positive integers n (≤ 40) and k (≤ 1000000). This is followed by n lines, each containing n non-negative integers, giving the matrix A.

Input is terminated by a case where n = 0. This case need NOT be processed.

Output

For each case, your program should compute the matrix A + A2 + A3 + ... + Ak. Since the values may be very large, you only need to print their last digit. Print a blank line after each case.

Sample Input

3 2
0 2 0
0 0 2
0 0 0
0 0

Sample Output

0 2 4
0 0 2
0 0 0

首先我们来想一下计算A+A^2+A^3...+A^k。

如果A=2,k=6。那你怎么算

2+22+23+24+25+26 = ?= (2+22+23)*(1+23)

如果A=2,k=7。那你怎么算

2+22+23+24+25+26+2= ?= (2+22+23)*(1+23)+27

so....同理:

当k是偶数,A+A^2+A^3...+A^k=(E+A^(k/2))*(A+A^2...+A^(k/2))。

当k是奇数,A+A^2+A^3...+A^k=(E+A^(k/2))*(A+A^2...+A^(k/2))+A^k。

转载请注明出处:寻找&星空の孩子

题目链接:UVA 11149

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define LL __int64
#define mmax 45 struct matrix
{
int mat[mmax][mmax];
}; int N; matrix multiply(matrix a,matrix b)
{
matrix c;
memset(c.mat,,sizeof(c.mat));
for(int i=; i<N; i++)
{
for(int j=; j<N; j++)
{
if(a.mat[i][j]==)continue;
for(int k=; k<N; k++)
{
if(b.mat[j][k]==)continue;
c.mat[i][k]=(c.mat[i][k]+a.mat[i][j]*b.mat[j][k])%; }
}
}
return c;
} matrix quickmod(matrix a,int n)
{
matrix res;
for(int i=; i<N; i++) //单位阵
for(int j=; j<N; j++)
res.mat[i][j]=(i==j);
while(n)
{
if(n&)
res=multiply(a,res);
a=multiply(a,a);
n>>=;
}
return res;
}
matrix add (matrix a,matrix b)
{
matrix ret;
for(int i=; i<N; i++)
for(int j=; j<N; j++)
ret.mat[i][j]=(a.mat[i][j]+b.mat[i][j])%;
return ret;
}
matrix solve(matrix a,int k)
{
if(k==) return a;
matrix ans;
for(int i=; i<N; i++)
for(int j=; j<N; j++)
ans.mat[i][j]=(i==j);
if(k==) return ans;
ans=multiply((add(quickmod(a,(k>>)),ans)),solve(a,(k>>)));
if(k%) ans=add(quickmod(a,k),ans);
return ans;
} int main()
{
int k;
while(scanf("%d%d",&N,&k)!=EOF)
{
if(!N)break;
matrix ans;
for(int i=;i<N;i++)
{
for(int j=;j<N;j++)
{
int temp;
scanf("%d",&temp);
ans.mat[i][j]=temp%;
}
} ans=solve(ans,k); for(int i=;i<N;i++)
{
for(int j=;j<N-;j++)
{
printf("%d ",ans.mat[i][j]);
}
printf("%d\n",ans.mat[i][N-]);
}
printf("\n");
}
return ;
}

Power of Matrix(uva11149+矩阵快速幂)的更多相关文章

  1. POJ 3233 Matrix Power Series 【经典矩阵快速幂+二分】

    任意门:http://poj.org/problem?id=3233 Matrix Power Series Time Limit: 3000MS   Memory Limit: 131072K To ...

  2. hdu4965 Fast Matrix Calculation 矩阵快速幂

    One day, Alice and Bob felt bored again, Bob knows Alice is a girl who loves math and is just learni ...

  3. ACM学习历程——HDU5015 233 Matrix(矩阵快速幂)(2014陕西网赛)

    Description In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 2 ...

  4. HDU 4965 Fast Matrix Calculation 矩阵快速幂

    题意: 给出一个\(n \times k\)的矩阵\(A\)和一个\(k \times n\)的矩阵\(B\),其中\(4 \leq N \leq 1000, \, 2 \leq K \leq 6\) ...

  5. bzoj 4128: Matrix ——BSGS&&矩阵快速幂&&哈希

    题目 给定矩阵A, B和模数p,求最小的正整数x满足 A^x = B(mod p). 分析 与整数的离散对数类似,只不过普通乘法换乘了矩阵乘法. 由于矩阵的求逆麻烦,使用 $A^{km-t} = B( ...

  6. UVA-11149 Power of Matrix(矩阵二分幂)

    题目大意:给一个n阶方阵,求A1+A2+A3+......Ak. 题目分析:令F(k)=A1+A2+A3+......Ak.当k为偶数时,F(k)=F(k/2)*(E+Ak/2),k为奇数时,F(k) ...

  7. Fast Matrix Calculation 矩阵快速幂

    One day, Alice and Bob felt bored again, Bob knows Alice is a girl who loves math and is just learni ...

  8. UVA11149 矩阵快速幂

    首先我们来想一下计算A+A^2+A^3...+A^k. 如果A=2,k=6.那你怎么算 2+22+23+24+25+26 = ?= (2+22+23)*(1+23) 如果A=2,k=7.那你怎么算 2 ...

  9. uva11149矩阵快速幂

    求A+A^1+...+A^n 转换一下变成|A  E|,的n+1次方就是|A^(n+1)  A^n+...+A+E| |0  E|                       |    0       ...

随机推荐

  1. git常用命令常用场景

    在使用git之前,一直用的是svn版本管理:与svn最大不同的是,git有两个仓库,一个是本地仓库,一个是服务器上共享的仓库:本地仓库是每个开发者自己独有的,即使commit提交也只是提交到本地仓库: ...

  2. 「PKUSC2018」主斗地(暴搜)

    这道斗地主比 \(PKUWC\) 那道可做多了... 我们用 \(NOIP\) 那道斗地主的思路:暴搜出三代和四代,贪心出散牌. 还有jry为什么要出xx网友而不出他的另一个老婆 我们发现两个人的每回 ...

  3. BigDecimalUtils

    package com.sprucetec.tms.utils; import java.math.BigDecimal;import java.text.SimpleDateFormat;impor ...

  4. centos 安装oracle 11g r2(三)-----表空间创建

    centos 安装oracle 11g r2(三)-----表空间创建 创建表空间前要保证监听与数据库实例已经启动 1.启动监听 [oracle@localhost ~]$ lsnrctl start ...

  5. python 数据库连接及操作

    Python DB-API使用流程: 引入API模块. 获取与数据库的连接. 执行SQL语句和存储过程. 关闭数据库连接. def mysql_dbtest(): config = { 'host': ...

  6. C# 单元测试(入门)

    注:本文示例环境 VS2017XUnit 2.2.0 单元测试框架xunit.runner.visualstudio 2.2.0 测试运行工具Moq 4.7.10 模拟框架 什么是单元测试? 确保软件 ...

  7. C++ Enum 转 Lua Table工具

    C++ Enum转Lua Table工具 观察C++ Enum结构 总结结构 enum GameMessage { //******* ///****************** GM_GAMESER ...

  8. 基于vue的web应用如何构建成手机端的原生安装包

    话不多说,点击前往

  9. 浅谈Retrofit2+Rxjava2

    近几年,Retrofit犹如燎原之火搬席卷了整个Android界.要是不懂Retrofit,简直不好意思出门...由于近几个项目都没用到Retrofit,无奈只能业余时间自己撸一下,写的不好的地方,还 ...

  10. 数据库设计 Step by Step (2)——数据库生命周期

    引言:数据库设计 Step by Step (1)得到这么多朋友的关注着实出乎了我的意外.这也坚定了我把这一系列的博文写好的决心.近来工作上的事务比较繁重,加之我期望这个系列的文章能尽可能的系统.完整 ...