Power of Matrix(uva11149+矩阵快速幂)
Power of Matrix
Time Limit:3000MS Memory Limit:0KB 64bit IO Format:%lld & %llu
System Crawler (2015-03-15)
Description
|
Problem B : Power of Matrix |
|
Time limit: 10 seconds |
Consider an n-by-n matrix A. We define Ak = A * A * ... * A (k times). Here, * denotes the usual matrix multiplication.
You are to write a program that computes the matrix A + A2 + A3 + ... + Ak.
Example
Suppose A =
. Then A2 = 
=
, thus:

Such computation has various applications. For instance, the above example actually counts all the paths in the following graph:

Input
Input consists of no more than 20 test cases. The first line for each case contains two positive integers n (≤ 40) and k (≤ 1000000). This is followed by n lines, each containing n non-negative integers, giving the matrix A.
Input is terminated by a case where n = 0. This case need NOT be processed.
Output
For each case, your program should compute the matrix A + A2 + A3 + ... + Ak. Since the values may be very large, you only need to print their last digit. Print a blank line after each case.
Sample Input
3 2
0 2 0
0 0 2
0 0 0
0 0
Sample Output
0 2 4
0 0 2
0 0 0
首先我们来想一下计算A+A^2+A^3...+A^k。
如果A=2,k=6。那你怎么算
2+22+23+24+25+26 = ?= (2+22+23)*(1+23)
如果A=2,k=7。那你怎么算
2+22+23+24+25+26+27 = ?= (2+22+23)*(1+23)+27
so....同理:
当k是偶数,A+A^2+A^3...+A^k=(E+A^(k/2))*(A+A^2...+A^(k/2))。
当k是奇数,A+A^2+A^3...+A^k=(E+A^(k/2))*(A+A^2...+A^(k/2))+A^k。
转载请注明出处:寻找&星空の孩子
题目链接:UVA 11149
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define LL __int64
#define mmax 45 struct matrix
{
int mat[mmax][mmax];
}; int N; matrix multiply(matrix a,matrix b)
{
matrix c;
memset(c.mat,,sizeof(c.mat));
for(int i=; i<N; i++)
{
for(int j=; j<N; j++)
{
if(a.mat[i][j]==)continue;
for(int k=; k<N; k++)
{
if(b.mat[j][k]==)continue;
c.mat[i][k]=(c.mat[i][k]+a.mat[i][j]*b.mat[j][k])%; }
}
}
return c;
} matrix quickmod(matrix a,int n)
{
matrix res;
for(int i=; i<N; i++) //单位阵
for(int j=; j<N; j++)
res.mat[i][j]=(i==j);
while(n)
{
if(n&)
res=multiply(a,res);
a=multiply(a,a);
n>>=;
}
return res;
}
matrix add (matrix a,matrix b)
{
matrix ret;
for(int i=; i<N; i++)
for(int j=; j<N; j++)
ret.mat[i][j]=(a.mat[i][j]+b.mat[i][j])%;
return ret;
}
matrix solve(matrix a,int k)
{
if(k==) return a;
matrix ans;
for(int i=; i<N; i++)
for(int j=; j<N; j++)
ans.mat[i][j]=(i==j);
if(k==) return ans;
ans=multiply((add(quickmod(a,(k>>)),ans)),solve(a,(k>>)));
if(k%) ans=add(quickmod(a,k),ans);
return ans;
} int main()
{
int k;
while(scanf("%d%d",&N,&k)!=EOF)
{
if(!N)break;
matrix ans;
for(int i=;i<N;i++)
{
for(int j=;j<N;j++)
{
int temp;
scanf("%d",&temp);
ans.mat[i][j]=temp%;
}
} ans=solve(ans,k); for(int i=;i<N;i++)
{
for(int j=;j<N-;j++)
{
printf("%d ",ans.mat[i][j]);
}
printf("%d\n",ans.mat[i][N-]);
}
printf("\n");
}
return ;
}
Power of Matrix(uva11149+矩阵快速幂)的更多相关文章
- POJ 3233 Matrix Power Series 【经典矩阵快速幂+二分】
任意门:http://poj.org/problem?id=3233 Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K To ...
- hdu4965 Fast Matrix Calculation 矩阵快速幂
One day, Alice and Bob felt bored again, Bob knows Alice is a girl who loves math and is just learni ...
- ACM学习历程——HDU5015 233 Matrix(矩阵快速幂)(2014陕西网赛)
Description In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 2 ...
- HDU 4965 Fast Matrix Calculation 矩阵快速幂
题意: 给出一个\(n \times k\)的矩阵\(A\)和一个\(k \times n\)的矩阵\(B\),其中\(4 \leq N \leq 1000, \, 2 \leq K \leq 6\) ...
- bzoj 4128: Matrix ——BSGS&&矩阵快速幂&&哈希
题目 给定矩阵A, B和模数p,求最小的正整数x满足 A^x = B(mod p). 分析 与整数的离散对数类似,只不过普通乘法换乘了矩阵乘法. 由于矩阵的求逆麻烦,使用 $A^{km-t} = B( ...
- UVA-11149 Power of Matrix(矩阵二分幂)
题目大意:给一个n阶方阵,求A1+A2+A3+......Ak. 题目分析:令F(k)=A1+A2+A3+......Ak.当k为偶数时,F(k)=F(k/2)*(E+Ak/2),k为奇数时,F(k) ...
- Fast Matrix Calculation 矩阵快速幂
One day, Alice and Bob felt bored again, Bob knows Alice is a girl who loves math and is just learni ...
- UVA11149 矩阵快速幂
首先我们来想一下计算A+A^2+A^3...+A^k. 如果A=2,k=6.那你怎么算 2+22+23+24+25+26 = ?= (2+22+23)*(1+23) 如果A=2,k=7.那你怎么算 2 ...
- uva11149矩阵快速幂
求A+A^1+...+A^n 转换一下变成|A E|,的n+1次方就是|A^(n+1) A^n+...+A+E| |0 E| | 0 ...
随机推荐
- git常用命令常用场景
在使用git之前,一直用的是svn版本管理:与svn最大不同的是,git有两个仓库,一个是本地仓库,一个是服务器上共享的仓库:本地仓库是每个开发者自己独有的,即使commit提交也只是提交到本地仓库: ...
- 「PKUSC2018」主斗地(暴搜)
这道斗地主比 \(PKUWC\) 那道可做多了... 我们用 \(NOIP\) 那道斗地主的思路:暴搜出三代和四代,贪心出散牌. 还有jry为什么要出xx网友而不出他的另一个老婆 我们发现两个人的每回 ...
- BigDecimalUtils
package com.sprucetec.tms.utils; import java.math.BigDecimal;import java.text.SimpleDateFormat;impor ...
- centos 安装oracle 11g r2(三)-----表空间创建
centos 安装oracle 11g r2(三)-----表空间创建 创建表空间前要保证监听与数据库实例已经启动 1.启动监听 [oracle@localhost ~]$ lsnrctl start ...
- python 数据库连接及操作
Python DB-API使用流程: 引入API模块. 获取与数据库的连接. 执行SQL语句和存储过程. 关闭数据库连接. def mysql_dbtest(): config = { 'host': ...
- C# 单元测试(入门)
注:本文示例环境 VS2017XUnit 2.2.0 单元测试框架xunit.runner.visualstudio 2.2.0 测试运行工具Moq 4.7.10 模拟框架 什么是单元测试? 确保软件 ...
- C++ Enum 转 Lua Table工具
C++ Enum转Lua Table工具 观察C++ Enum结构 总结结构 enum GameMessage { //******* ///****************** GM_GAMESER ...
- 基于vue的web应用如何构建成手机端的原生安装包
话不多说,点击前往
- 浅谈Retrofit2+Rxjava2
近几年,Retrofit犹如燎原之火搬席卷了整个Android界.要是不懂Retrofit,简直不好意思出门...由于近几个项目都没用到Retrofit,无奈只能业余时间自己撸一下,写的不好的地方,还 ...
- 数据库设计 Step by Step (2)——数据库生命周期
引言:数据库设计 Step by Step (1)得到这么多朋友的关注着实出乎了我的意外.这也坚定了我把这一系列的博文写好的决心.近来工作上的事务比较繁重,加之我期望这个系列的文章能尽可能的系统.完整 ...