基于多层感知机的手写数字识别(Tensorflow实现)
import numpy as np
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import os
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
class MNISTModel(object):
def __init__(self, lr, batch_size, iter_num):
self.lr = lr
self.batch_size = batch_size
self.iter_num = iter_num
# 定义模型结构
# 输入张量,这里还没有数据,先占个地方,所以叫“placeholder”
self.x = tf.placeholder(tf.float32, [None, 784]) # 图像是28*28的大小
self.y = tf.placeholder(tf.float32, [None, 10]) # 输出是0-9的one-hot向量
self.h = tf.layers.dense(self.x, 100, activation=tf.nn.relu, use_bias=True, kernel_initializer=tf.truncated_normal_initializer) # 一个全连接层
self.y_ = tf.layers.dense(self.h, 10, use_bias=True, kernel_initializer=tf.truncated_normal_initializer) # 全连接层
# 使用交叉熵损失函数
self.loss = tf.losses.softmax_cross_entropy(self.y, self.y_)
self.optimizer = tf.train.AdamOptimizer()
self.train_step = self.optimizer.minimize(self.loss)
# 用于模型训练
self.correct_prediction = tf.equal(tf.argmax(self.y, axis=1), tf.argmax(self.y_, axis=1))
self.accuracy = tf.reduce_mean(tf.cast(self.correct_prediction, tf.float32))
# 用于保存训练好的模型
self.saver = tf.train.Saver()
def train(self):
with tf.Session() as sess: # 打开一个会话。可以想象成浏览器打开一个标签页一样,直观地理解一下
sess.run(tf.global_variables_initializer()) # 先初始化所有变量。
for i in range(self.iter_num):
batch_x, batch_y = mnist.train.next_batch(self.batch_size) # 读取一批数据
loss, _ = sess.run([self.loss, self.train_step], feed_dict={self.x: batch_x, self.y: batch_y}) # 每调用一次sess.run,就像拧开水管一样,所有self.loss和self.train_step涉及到的运算都会被调用一次。
if i%1000 == 0:
train_accuracy = sess.run(self.accuracy, feed_dict={self.x: batch_x, self.y: batch_y}) # 把训练集数据装填进去
test_x, test_y = mnist.test.next_batch(self.batch_size)
test_accuracy = sess.run(self.accuracy, feed_dict={self.x: test_x, self.y: test_y}) # 把测试集数据装填进去
print( 'iter\t%i\tloss\t%f\ttrain_accuracy\t%f\ttest_accuracy\t%f' % (i,loss,train_accuracy,test_accuracy))
self.saver.save(sess, 'model/mnistModel') # 保存模型
def test(self):
with tf.Session() as sess:
self.saver.restore(sess, 'model/mnistModel')
Accuracy = []
for i in range(150):
test_x, test_y = mnist.test.next_batch(self.batch_size)
test_accuracy = sess.run(self.accuracy, feed_dict={self.x: test_x, self.y: test_y})
Accuracy.append(test_accuracy)
print ('==' * 15)
print ('Test Accuracy: ', np.mean(np.array(Accuracy)))
model = MNISTModel(0.001, 64, 40000) # 学习率为0.001,每批传入64张图,训练40000次
model.train() # 训练模型
model.test() #测试模型
基于多层感知机的手写数字识别(Tensorflow实现)的更多相关文章
- 基于Numpy的神经网络+手写数字识别
基于Numpy的神经网络+手写数字识别 本文代码来自Tariq Rashid所著<Python神经网络编程> 代码分为三个部分,框架如下所示: # neural network class ...
- Mnist手写数字识别 Tensorflow
Mnist手写数字识别 Tensorflow 任务目标 了解mnist数据集 搭建和测试模型 编辑环境 操作系统:Win10 python版本:3.6 集成开发环境:pycharm tensorflo ...
- [Python]基于CNN的MNIST手写数字识别
目录 一.背景介绍 1.1 卷积神经网络 1.2 深度学习框架 1.3 MNIST 数据集 二.方法和原理 2.1 部署网络模型 (1)权重初始化 (2)卷积和池化 (3)搭建卷积层1 (4)搭建卷积 ...
- 基于卷积神经网络的手写数字识别分类(Tensorflow)
import numpy as np import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_dat ...
- 吴裕雄--天生自然python机器学习:基于支持向量机SVM的手写数字识别
from numpy import * def img2vector(filename): returnVect = zeros((1,1024)) fr = open(filename) for i ...
- MNIST手写数字识别 Tensorflow实现
def conv2d(x, W): return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') 1. strides在官方定义中是一 ...
- Keras mlp 手写数字识别示例
#基于mnist数据集的手写数字识别 #构造了三层全连接层组成的多层感知机,最后一层为输出层 #基于Keras 2.1.1 Tensorflow 1.4.0 代码: import keras from ...
- 【TensorFlow-windows】(四) CNN(卷积神经网络)进行手写数字识别(mnist)
主要内容: 1.基于CNN的mnist手写数字识别(详细代码注释) 2.该实现中的函数总结 平台: 1.windows 10 64位 2.Anaconda3-4.2.0-Windows-x86_64. ...
- Keras cnn 手写数字识别示例
#基于mnist数据集的手写数字识别 #构造了cnn网络拟合识别函数,前两层为卷积层,第三层为池化层,第四层为Flatten层,最后两层为全连接层 #基于Keras 2.1.1 Tensorflow ...
随机推荐
- Maven的插件管理
<pluginManagement> 这个元素和<dependencyManagement>相类似,它是用来进行插件管理的. 在我们项目开发的过程中,也会频繁的引入插件,所以解 ...
- I2S接口工作原理
I2S音频通信协议 I2S有3个主要信号: 1.串行时钟SCLK,也叫位时钟(BCLK),即对应数字音频的每一位数据,SCLK都有1个脉冲.SCLK的频率=2×采样频率×采样位数 2. 帧时钟LRC ...
- Android-Java-面向对象与面向过程的简单理解
支持面向过程的语言有:C Basic 等语言: 支持面向对象的语言有:C++ Java C# 等语言: 面向过程:操作的是行为/功能: 面向对象:操作的是对象,而对象里面有功能行为,所以可以指定 ...
- PICT用户手册 [转]
PICT 3.3 User's Guide Jacek Czerwonka, Test Lead, Microsoft Corporation Overview Using PICT to Combi ...
- XAML 调试工具 不见了?
XAML调试工具不见了怎么办? 1.调试---> 选项---> 选中 启用XAML的UI调试工具 2.调试---> 选项---> 禁用 使用托管兼容模式 欧了!
- TCP连接详解
一. 连接过程示意图 二. 建立TCP连接 2.1 三次握手 第一次握手:建立连接.客户端发送连接请求报文段,将SYN置为1,Sequence Number为x:然后,客户端进入SYN_SEND状态, ...
- 重拾 BFC、IFC、GFC、FFC
温故知新,巩固基础 从 FC 开始 FC,Formatting Context,格式化上下文,是 W3C CSS2.1 规范中的一个概念,定义的是页面中一块渲染区域,并且有一套渲染规则,它决定了其子元 ...
- Vue+WebSocket+ES6+Canvas 制作「你画我猜」小游戏
Vue+WebSocket+ES6+Canvas 制作「你画我猜」小游戏 转载 来源:jrainlau 链接:https://segmentfault.com/a/1190000005804860 项 ...
- js 的this
js的this应该是不好掌握又必须要掌握的东西 主要参考: http://www.cnblogs.com/pssp/p/5216085.html http://www.cnblogs.com/fron ...
- MySQL 排名统计(常用功能函数)
select actor_id,@curr_cnt:=cnt as cnt , ,@rank) as rank, @prev_cnt:=@curr_cnt as dummy from( select ...