【BZOJ】1294: [SCOI2009]围豆豆Bean
题解
这个就是考虑我们怎么判断点在多边形内,就是点做一条射线,穿过了奇数条边
我们只需要记录一个二进制状态表示每个点的射线穿过路径的次数的奇偶性
枚举起点,然后用BFS的方式更新dp状态
代码
#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define space putchar(' ')
#define enter putchar('\n')
#define mp make_pair
#define pb push_back
//#define ivorysi
#define MAXN 300005
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
res = 0;char c = getchar();T f = 1;
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar('-');}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
int N,M,D,val[MAXN],ql,qr;
int dp[15][15][(1 << 9) + 5];
int dx[4] = {0,1,0,-1},dy[4] = {1,0,-1,0};
int tp[15][15][4],sum[(1 << 9) + 5];
char s[15][15];
struct node {
int x,y,S;
}que[1000005];
int Calc(int x,int y) {
int res = 0;
for(int j = 1 ; j < y ; ++j) {
if(s[x][j] >= '1' && s[x][j] <= '9') res |= (1 << (s[x][j] - '1'));
}
return res;
}
void Init() {
read(N);read(M);read(D);
for(int i = 1 ; i <= D ; ++i) read(val[i]);
for(int i = 1 ; i <= N ; ++i) scanf("%s",s[i] + 1);
for(int i = 1 ; i <= N ; ++i) {
for(int j = 1 ; j <= M ; ++j) {
if(s[i][j] == '0') {
for(int k = 0 ; k <= 3 ; ++k) {
int tx = i + dx[k],ty = j + dy[k];
if(tx >= 1 && tx <= N && ty >= 1 && ty <= M && s[tx][ty] == '0') {
if(tx != i) {
tp[i][j][k] = Calc(max(i,tx),j);
}
}
else tp[i][j][k] = -1;
}
}
}
}
for(int i = 0 ; i < (1 << D) ; ++i) {
for(int j = 0 ; j < D ; ++j) {
if(i >> j & 1) sum[i] += val[j + 1];
}
}
}
void BFS(int x,int y) {
int ql = 1,qr = 0;
que[++qr] = (node){x,y,0};
dp[x][y][0] = 0;
while(ql <= qr) {
node u = que[ql++];
for(int k = 0 ; k <= 3 ; ++k) {
if(tp[u.x][u.y][k] != -1) {
if(dp[u.x + dx[k]][u.y + dy[k]][u.S ^ tp[u.x][u.y][k]] == -1) {
dp[u.x + dx[k]][u.y + dy[k]][u.S ^ tp[u.x][u.y][k]] = dp[u.x][u.y][u.S] + 1;
que[++qr] = (node){u.x + dx[k],u.y + dy[k],u.S ^ tp[u.x][u.y][k]};
}
}
}
}
}
void Solve() {
int ans = 0;
for(int i = 1 ; i <= N ; ++i) {
for(int j = 1 ; j <= M ; ++j) {
if(s[i][j] != '0') continue;
memset(dp,-1,sizeof(dp));
BFS(i,j);
for(int k = 0 ; k < (1 << D) ; ++k) {
if(dp[i][j][k] != -1) ans = max(ans,sum[k] - dp[i][j][k]);
}
}
}
out(ans);enter;
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Init();
Solve();
return 0;
}
【BZOJ】1294: [SCOI2009]围豆豆Bean的更多相关文章
- BZOJ 1294 [SCOI2009]围豆豆Bean ——计算几何
显然我们不可能表示出一台路径,因为实在是太复杂了. 所以我们可以记录一下路径对答案的影响,显然路径对答案影响相同的时候,答案更优,所以我们可以用影响来代替路径. 所以我们考虑状压一下所有的豆子有没有被 ...
- [BZOJ1294][SCOI2009]围豆豆Bean 射线法+状压dp+spfa
1294: [SCOI2009]围豆豆Bean Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 458 Solved: 305[Submit][Sta ...
- 【BZOJ1294】[SCOI2009]围豆豆Bean 射线法+状压DP+SPFA
[BZOJ1294][SCOI2009]围豆豆Bean Description Input 第一行两个整数N和M,为矩阵的边长. 第二行一个整数D,为豆子的总个数. 第三行包含D个整数V1到VD,分别 ...
- BZOJ1294: [SCOI2009]围豆豆Bean
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1294 状压dp,dis[s][i][j]表示从(i,j)出发围的状态是s的最短路. 然后判断一 ...
- 【BZOJ1294】[SCOI2009]围豆豆(动态规划,状压)
[BZOJ1294][SCOI2009]围豆豆(动态规划,状压) 题面 BZOJ 洛谷 题解 首先考虑如何判断一个点是否在一个多边形内(不一定是凸的),我们从这个点开始,朝着一个方向画一条射线,看看它 ...
- 洛谷P2566 [SCOI2009]围豆豆(状压dp+spfa)
题目传送门 题解 Σ(っ °Д °;)っ 前置知识 射线法:从一点向右(其实哪边都行)水平引一条射线,若射线与路径的交点为偶数,则点不被包含,若为奇数,则被包含.(但注意存在射线与路径重合的情况) 这 ...
- [SCOI2009]围豆豆
Description Input 第一行两个整数N和M,为矩阵的边长. 第二行一个整数D,为豆子的总个数. 第三行包含D个整数V1到VD,分别为每颗豆子的分值. 接着N行有一个N×M的字符矩阵来描述 ...
- bzoj1294 [SCOI2009]围豆豆
Description Input 第一行两个整数N和M,为矩阵的边长. 第二行一个整数D,为豆子的总个数. 第三行包含D个整数V1到VD,分别为每颗豆子的分值. 接着N行有一个N×M的字符矩阵来描述 ...
- 【题解】SCOI2009围豆豆
很久之前就很想做的一道题,一直思考到今天才下定决心看题解.这道题中,很关键的一点就在于:如何判断一个点是否在一个多边形内?其实如果计算几何基本功扎实的话,应该是可以很快给出答案的(可惜我完全不行):由 ...
随机推荐
- BZOJ 4004: [JLOI2015]装备购买
4004: [JLOI2015]装备购买 Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 1154 Solved: 376[Submit][Statu ...
- CJB的大作
Description 给你一个长度不超过100的字符串.一共进行\(N\)次操作,第\(i\)次操作是将当前字符串复制一份接到后面,并将新的一份循环移位\(k_i\)(\(1 \le k_i \le ...
- [学习笔记]插头dp
基于连通性的状压dp 巧妙之处:插头已经可以表示内部所有状态了. 就是讨论麻烦一些. 简介 转移方法:逐格转移,分类讨论 记录状态方法:最小表示法(每次要重新编号,对于一类没用“回路路径”之类的题,可 ...
- linux driver ------ 三星公司uboot模式下更改分区(EMMC)大小fdisk命令 ------ iTOP4412 开发板烧写
核心板 SCP 1G eMMC:KLM8G------>8G 终端(串口)输入(如果执行过,只需要执行最后一句即可): 开发板一启动,立马在终端按回车,进入 uboot 模式 fdisk -c ...
- 管理KVM虚拟机(二)
管理KVM虚拟机 工具:libvirt 官网:http://libvirt.org/ 介绍:Libvirt 库是一种实现 Linux 虚拟化功能的 Linux® API,它支持各种虚拟机监控程序,包括 ...
- 纯CSS实现表单验证
ladies and 乡亲们,表单验证你在做吗?客户端or服务器端,javascript or jquery,动手写 or 使用插件,今天我们来探索下使用纯css实现表单验证,借以学习css sele ...
- HDU 3389 阶梯博弈变形
n堆石子,每次选取两堆a!=b,(a+b)%2=1 && a!=b && 3|a+b,不能操作者输 选石子堆为奇数的等价于选取步数为奇数的,观察发现 1 3 4 是无法 ...
- Nginx学习总结
2017年2月23日, 星期四 Nginx学习总结 Nginx是目前比较主流的HTTP反向代理服务器(其企业版提供了基于TCP层的反向代理插件),对于构建大型分布式web应用,具有举足轻重的作用.简单 ...
- JMS学习(四)-一个简单的聊天应用程序分析
一,介绍 本文介绍一个简单的聊天应用程序:生产者将消息发送到Topic上,然后由ActiveMQ将该消息Push给订阅了该Topic的消费者.示例程序来自于<JAVA 消息服务--第二版 Mar ...
- Sublime Text 3 绿色汉化版 x64
之前做了<Sublime Text 2 绿色汉化版 x64>,这些天抽空做了下 ST3 的汉化.. 果然我没有任何理由爱上 ST3,不仅pojie麻烦,而且汉化更麻烦,菜单字符长度做了限制 ...