题解

随机跳题真好玩

这个就是考虑我们怎么判断点在多边形内,就是点做一条射线,穿过了奇数条边

我们只需要记录一个二进制状态表示每个点的射线穿过路径的次数的奇偶性

枚举起点,然后用BFS的方式更新dp状态

代码

#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define space putchar(' ')
#define enter putchar('\n')
#define mp make_pair
#define pb push_back
//#define ivorysi
#define MAXN 300005
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
res = 0;char c = getchar();T f = 1;
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar('-');}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
int N,M,D,val[MAXN],ql,qr;
int dp[15][15][(1 << 9) + 5];
int dx[4] = {0,1,0,-1},dy[4] = {1,0,-1,0};
int tp[15][15][4],sum[(1 << 9) + 5];
char s[15][15];
struct node {
int x,y,S;
}que[1000005];
int Calc(int x,int y) {
int res = 0;
for(int j = 1 ; j < y ; ++j) {
if(s[x][j] >= '1' && s[x][j] <= '9') res |= (1 << (s[x][j] - '1'));
}
return res;
}
void Init() {
read(N);read(M);read(D);
for(int i = 1 ; i <= D ; ++i) read(val[i]);
for(int i = 1 ; i <= N ; ++i) scanf("%s",s[i] + 1);
for(int i = 1 ; i <= N ; ++i) {
for(int j = 1 ; j <= M ; ++j) {
if(s[i][j] == '0') {
for(int k = 0 ; k <= 3 ; ++k) {
int tx = i + dx[k],ty = j + dy[k];
if(tx >= 1 && tx <= N && ty >= 1 && ty <= M && s[tx][ty] == '0') {
if(tx != i) {
tp[i][j][k] = Calc(max(i,tx),j);
}
}
else tp[i][j][k] = -1;
}
}
}
}
for(int i = 0 ; i < (1 << D) ; ++i) {
for(int j = 0 ; j < D ; ++j) {
if(i >> j & 1) sum[i] += val[j + 1];
}
}
}
void BFS(int x,int y) {
int ql = 1,qr = 0;
que[++qr] = (node){x,y,0};
dp[x][y][0] = 0;
while(ql <= qr) {
node u = que[ql++];
for(int k = 0 ; k <= 3 ; ++k) {
if(tp[u.x][u.y][k] != -1) {
if(dp[u.x + dx[k]][u.y + dy[k]][u.S ^ tp[u.x][u.y][k]] == -1) {
dp[u.x + dx[k]][u.y + dy[k]][u.S ^ tp[u.x][u.y][k]] = dp[u.x][u.y][u.S] + 1;
que[++qr] = (node){u.x + dx[k],u.y + dy[k],u.S ^ tp[u.x][u.y][k]};
}
}
}
}
}
void Solve() {
int ans = 0;
for(int i = 1 ; i <= N ; ++i) {
for(int j = 1 ; j <= M ; ++j) {
if(s[i][j] != '0') continue;
memset(dp,-1,sizeof(dp));
BFS(i,j);
for(int k = 0 ; k < (1 << D) ; ++k) {
if(dp[i][j][k] != -1) ans = max(ans,sum[k] - dp[i][j][k]);
}
}
}
out(ans);enter;
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Init();
Solve();
return 0;
}

【BZOJ】1294: [SCOI2009]围豆豆Bean的更多相关文章

  1. BZOJ 1294 [SCOI2009]围豆豆Bean ——计算几何

    显然我们不可能表示出一台路径,因为实在是太复杂了. 所以我们可以记录一下路径对答案的影响,显然路径对答案影响相同的时候,答案更优,所以我们可以用影响来代替路径. 所以我们考虑状压一下所有的豆子有没有被 ...

  2. [BZOJ1294][SCOI2009]围豆豆Bean 射线法+状压dp+spfa

    1294: [SCOI2009]围豆豆Bean Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 458  Solved: 305[Submit][Sta ...

  3. 【BZOJ1294】[SCOI2009]围豆豆Bean 射线法+状压DP+SPFA

    [BZOJ1294][SCOI2009]围豆豆Bean Description Input 第一行两个整数N和M,为矩阵的边长. 第二行一个整数D,为豆子的总个数. 第三行包含D个整数V1到VD,分别 ...

  4. BZOJ1294: [SCOI2009]围豆豆Bean

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1294 状压dp,dis[s][i][j]表示从(i,j)出发围的状态是s的最短路. 然后判断一 ...

  5. 【BZOJ1294】[SCOI2009]围豆豆(动态规划,状压)

    [BZOJ1294][SCOI2009]围豆豆(动态规划,状压) 题面 BZOJ 洛谷 题解 首先考虑如何判断一个点是否在一个多边形内(不一定是凸的),我们从这个点开始,朝着一个方向画一条射线,看看它 ...

  6. 洛谷P2566 [SCOI2009]围豆豆(状压dp+spfa)

    题目传送门 题解 Σ(っ °Д °;)っ 前置知识 射线法:从一点向右(其实哪边都行)水平引一条射线,若射线与路径的交点为偶数,则点不被包含,若为奇数,则被包含.(但注意存在射线与路径重合的情况) 这 ...

  7. [SCOI2009]围豆豆

    Description Input 第一行两个整数N和M,为矩阵的边长. 第二行一个整数D,为豆子的总个数. 第三行包含D个整数V1到VD,分别为每颗豆子的分值. 接着N行有一个N×M的字符矩阵来描述 ...

  8. bzoj1294 [SCOI2009]围豆豆

    Description Input 第一行两个整数N和M,为矩阵的边长. 第二行一个整数D,为豆子的总个数. 第三行包含D个整数V1到VD,分别为每颗豆子的分值. 接着N行有一个N×M的字符矩阵来描述 ...

  9. 【题解】SCOI2009围豆豆

    很久之前就很想做的一道题,一直思考到今天才下定决心看题解.这道题中,很关键的一点就在于:如何判断一个点是否在一个多边形内?其实如果计算几何基本功扎实的话,应该是可以很快给出答案的(可惜我完全不行):由 ...

随机推荐

  1. 前端学习 -- Css -- 字体分类

    在网页中将字体分成5大类: serif(衬线字体) sans-serif(非衬线字体) monospace (等宽字体) cursive (草书字体) fantasy (虚幻字体) 可以将字体设置为这 ...

  2. 51nod 1577 异或凑数

    思路真的是挺巧妙的. 让我惊叹,原来线性基还能这么做?!?! 好吧,这种取若干个数异或凑数的题目怎么能少的了线性基呢? 但是,问题集中在于怎么快速提取一个区间的线性基 暴力n^2 线段树维护线性基?分 ...

  3. C#列表所有IIS站点以及相关站点属性

    using System; using System.Drawing; using System.Collections; using System.ComponentModel; using Sys ...

  4. webpack进阶--loader

    webpack的核心就是它的配置文件,只要配置好配置文件webpack就可以用得利索-- 而配置文件主要就是7个部分entry.output.plugins.resolve.devserver(web ...

  5. oracle connect by用法篇 (转)

    1.基本语法 select * from table [start with condition1] connect by [prior] id=parentid 1 2 1 2 一般用来查找存在父子 ...

  6. SQL语句(七)简单查询

    --简单信息查询 --例1 查询所有学生的信息 --学生 -- Student --所有学生 -- 不限定班级.性别.年龄等条件 --所有信息 -- 所有字段,* select * from stud ...

  7. html canvas非正方旋转和缩放...写的大多是正方的有人表示一直看正方的看厌了

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  8. systemd的电源管理

    ArchLinux早就使用systemd替代了init脚本. 不用图形界面.或者使用 i3.awesome 这样简单的窗口管理器时,systemd 可以替代 acpid 处理 ACPI 事件. 注意: ...

  9. rstful登陆认证并检查session是否过期

    一:restful用户视图 #!/usr/bin/env python # -*- coding:UTF-8 -*- # Author:Leslie-x from users import model ...

  10. DSO 优化代码中的 Schur Complement

    接上一篇博客<直接法光度误差导数推导>,DSO 代码中 CoarseInitializer::trackFrame 目的是优化两帧(ref frame 和 new frame)之间的相对状 ...