Permutation Test 置换检验(转)
Permutation Test 置换检验
显著性检验通常可以告诉我们一个观测值是否是有效的,例如检测两组样本均值差异的假设检验可以告诉我们这两组样本的均值是否相等(或者那个均值更大)。我们在实验中经常会因为各种问题(时间、经费、人力、物力)得到一些小样本结果,如果我们想知道这些小样本结果的总体是什么样子的,就需要用到置换检验。
Permutation test 置换检验是Fisher于20世纪30年代提出的一种基于大量计算(computationally intensive),利用样本数据的全(或随机)排列,进行统计推断的方法,因其对总体分布自由,应用较为广泛,特别适用于总体分布未知的小样本资料,以及某些难以用常规方法分析资料的假设检验问题。在具体使用上它和Bootstrap Methods类似,通过对样本进行顺序上的置换,重新计算统计检验量,构造经验分布,然后在此基础上求出P-value进行推断。
下面通过一个简单例子来介绍Permutation test的思想。
假设我们设计了一个实验来验证加入某种生长素后拟南芥的侧根数量会明显增加。A组是加入某种生长素后,拟南芥的侧根数量;B是不加生长素时,拟南芥的侧根数量(均为假定值)。
A组侧根数量(共12个数据):24 43 58 67 61 44 67 49 59 52 62 50
B组侧根数量(共16个数据):42 43 65 26 33 41 19 54 42 20 17 60 37 42 55 28
我们来用假设检验的方法来判断生长素是否起作用。我们的零假设为:加入的生长素不会促进拟南芥的根系发育。在这个检验中,若零假设成立,那么A组数据的分布和B组数据的分布是一样的,也就是服从同个分布。
接下来构造检验统计量——A组侧根数目的均值同B组侧根数目的均值之差。
statistic:= mean(Xa)-mean(Xb)
对于观测值有 Sobs:=mean(Xa)-mean(Xb)=(24+43+58+67+61+44+67+49+59+52+62+50)/12-(42+43+65+26+33+41+19+54+42+20+17+60+37+42+55+28)/16=14
我们可以通过Sobs在置换分布(permutation distribution)中的位置来得到它的P-value。
Permutation test的具体步骤是:
1.将A、B两组数据合并到一个集合中,从中挑选出12个作为A组的数据(X'a),剩下的作为B组的数据(X'b)。
Gourp:=24 43 58 67 61 44 67 49 59 52 62 50 42 43 65 26 33 41 19 54 42 20 17 60 37 42 55 28
挑选出 X'a:=43 17 44 62 60 26 28 61 50 43 33 19
X'b:=55 41 42 65 59 24 54 52 42 49 37 67 67 20 42 58
2.计算并记录第一步中A组同B组的均值之差。Sper:=mean(X'a)-mean(X'b)= -7.875
3.对前两步重复999次(重复次数越多,得到的背景分布越”稳定“)
这样我们得到有999个置换排列求得的999个Sper结果,这999个Sper结果能代表拟南芥小样本实验的抽样总体情况。
如上图所示,我们的观测值 Sobs=14 在抽样总体右尾附近,说明在零假设条件下这个数值是很少出现的。在permutation得到的抽样总体中大于14的数值有9个,所以估计的P-value是9/999=0.01
最后还可以进一步精确P-value结果(做一个抽样总体校正),在抽样总体中加入一个远大于观测值 Sobs=14的样本,最终的P-value=(9+1)/(999+1)=0.01。(为什么这样做是一个校正呢?自己思考:))结果表明我们的原假设不成立,加入生长素起到了促使拟南芥的根系发育的作用。
参考资料:
1. http://bcs.whfreeman.com/ips5e/content/cat_080/pdf/moore14.pdf
2. http://jpkc.njmu.edu.cn/course/tongjixue/file/jxzy/tjjz02.htm
3. http://www.r-bloggers.com/lang/chinese/541
附录:R语言求解上例的代码
a<-c(24,43,58,67,61,44,67,49,59,52,62,50,42,43,65,26,33,41,19,54,42,20,17,60,37,42,55,28)
group<-factor(c(rep("A",12),rep("B",16)))
data<-data.frame(group,a)
find.mean<-function(x){
mean(x[group=="A",2])-mean(x[group=="B",2])
}
results<-replicate(999,find.mean(data.frame(group,sample(data[,2]))))
p.value<-length(results[results>mean(data[group=="A",2])-mean(data[group=="B",2])])/1000
hist(results,breaks=20,prob=TRUE)
lines(density(results))
Permutation Test 置换检验(转)的更多相关文章
- Permutation test 置换检验
来源:Public Library of Bioinformatics 显著性检验通常可以告诉我们一个观测值是否是有效的,例如检测两组样本均值差异的假设检验可以告诉我们这两组样本的均值是否相等(或者那 ...
- 置换检验(Permutation Test)学习[转载]
转自:https://www.cnblogs.com/bnuvincent/p/6813785.html http://www.bioinfo-scrounger.com/archives/564 1 ...
- Permutation test: p, CI, CI of P 置换检验相关统计量的计算
For research purpose, I've read a lot materials on permutation test issue. Here is a summary. Should ...
- R in action读书笔记(16)第十二章 重抽样与自助法之 置换检验
第十二章:重抽样与自助法 本章,我们将探究两种应用广泛的依据随机化思想的统计方法:置换检验和自助法 12.1 置换检验 置换检验,也称随机化检验或重随机化检验. 有两种处理条件的实验,十个受试者已经被 ...
- Permutation Sequence
The set [1,2,3,-,n] contains a total of n! unique permutations. By listing and labeling all of the p ...
- [LeetCode] Palindrome Permutation II 回文全排列之二
Given a string s, return all the palindromic permutations (without duplicates) of it. Return an empt ...
- [LeetCode] Palindrome Permutation 回文全排列
Given a string, determine if a permutation of the string could form a palindrome. For example," ...
- [LeetCode] Permutation Sequence 序列排序
The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of the p ...
- [LeetCode] Next Permutation 下一个排列
Implement next permutation, which rearranges numbers into the lexicographically next greater permuta ...
随机推荐
- [转]WINDOW进程通信的几种方式
windows进程通信的几种方式 1 文件映射 文件映射(Memory-Mapped Files)能使进程把文件内容当作进程地址区间一块内存那样来对待.因此,进程不必使用文件I/O操作,只需简单的指针 ...
- rpm与yum命令的初步认识
RPM:Red Hat package manager(RedHat软件包管理工具),现在为RPM is Package Manager好比windows里的文件扩展名为·exe的软件包. RPM的包 ...
- 利用ApnsPHP包向IOS推送消息
header('content-type:text/html;charset=utf-8'); require_once 'ApnsPHP/Autoload.php'; require_once 'A ...
- window下安装composer和laravel
安装composer: 1.在https://getcomposer.org/download/ 中下载 Composer-Setup.exe 2.安装composer步骤如下: 至此,compose ...
- java 中的匿名内部类
转自http://www.cnblogs.com/nerxious/archive/2013/01/25/2876489.html 匿名内部类也就是没有名字的内部类 正因为没有名字,所以匿名内部类只能 ...
- xshell连接linux服务器切换至oracle的sqlplus控制台时,无法使用回车键的解决方案!
当使用xshell连接linux服务器后,切换至sqlplus控制台,当使用回车键时,出现^H的符号,貌似回车键不能用!解决方案: 1)$ stty erase ^H : 与退格键相关的设置是eras ...
- WPF中利用后台代码实现窗口分栏动态改变
在WPF中实现窗口分栏并能够通过鼠标改变大小已经非常容易,例如将一个GRID分成竖排三栏显示,就可以将GRID先分成5列,其中两个固定列放GridSplitter. <Grid Backgrou ...
- onclick控制元素显示与隐藏时,点击第一次无反应的原因
*:first-child { margin-top: 0 !important; } body>*:last-child { margin-bottom: 0 !important; } /* ...
- FPGA位宽的转换和定义
数字表达式的定义<位宽><进制><数字>,这是一种全面的描述方式 例如:如果我要定义一个变量counter = 5000 0000 ,10进制数:那么他的位宽应该是 ...
- MyBatis定义复合主键
<resultMap type="XX" id="XXMap"> <id property="id" column=& ...