Permutation Test 置换检验

显著性检验通常可以告诉我们一个观测值是否是有效的,例如检测两组样本均值差异的假设检验可以告诉我们这两组样本的均值是否相等(或者那个均值更大)。我们在实验中经常会因为各种问题(时间、经费、人力、物力)得到一些小样本结果,如果我们想知道这些小样本结果的总体是什么样子的,就需要用到置换检验

Permutation test 置换检验是Fisher于20世纪30年代提出的一种基于大量计算(computationally intensive),利用样本数据的全(或随机)排列,进行统计推断的方法,因其对总体分布自由,应用较为广泛,特别适用于总体分布未知的小样本资料,以及某些难以用常规方法分析资料的假设检验问题。在具体使用上它和Bootstrap Methods类似,通过对样本进行顺序上的置换,重新计算统计检验量,构造经验分布,然后在此基础上求出P-value进行推断。

下面通过一个简单例子来介绍Permutation test的思想。

假设我们设计了一个实验来验证加入某种生长素后拟南芥的侧根数量会明显增加。A组是加入某种生长素后,拟南芥的侧根数量;B是不加生长素时,拟南芥的侧根数量(均为假定值)。

A组侧根数量(共12个数据):24 43 58 67 61 44 67 49 59 52 62 50

B组侧根数量(共16个数据):42 43 65 26 33 41 19 54 42 20 17 60 37 42 55 28

我们来用假设检验的方法来判断生长素是否起作用。我们的零假设为:加入的生长素不会促进拟南芥的根系发育。在这个检验中,若零假设成立,那么A组数据的分布和B组数据的分布是一样的,也就是服从同个分布。

接下来构造检验统计量——A组侧根数目的均值同B组侧根数目的均值之差。

statistic:= mean(Xa)-mean(Xb)

对于观测值有 Sobs:=mean(Xa)-mean(Xb)=(24+43+58+67+61+44+67+49+59+52+62+50)/12-(42+43+65+26+33+41+19+54+42+20+17+60+37+42+55+28)/16=14

我们可以通过Sobs在置换分布(permutation distribution)中的位置来得到它的P-value。

Permutation test的具体步骤是:

1.将A、B两组数据合并到一个集合中,从中挑选出12个作为A组的数据(X'a),剩下的作为B组的数据(X'b)。

Gourp:=24 43 58 67 61 44 67 49 59 52 62 50 42 43 65 26 33 41 19 54 42 20 17 60 37 42 55 28

挑选出 X'a:=43 17 44 62 60 26 28 61 50 43 33 19

X'b:=55 41 42 65 59 24 54 52 42 49 37 67 67 20 42 58

2.计算并记录第一步中A组同B组的均值之差。Sper:=mean(X'a)-mean(X'b)= -7.875

3.对前两步重复999次(重复次数越多,得到的背景分布越”稳定“)

这样我们得到有999个置换排列求得的999个Sper结果,这999个Sper结果能代表拟南芥小样本实验的抽样总体情况。

如上图所示,我们的观测值 Sobs=14 在抽样总体右尾附近,说明在零假设条件下这个数值是很少出现的。在permutation得到的抽样总体中大于14的数值有9个,所以估计的P-value是9/999=0.01

最后还可以进一步精确P-value结果(做一个抽样总体校正),在抽样总体中加入一个远大于观测值 Sobs=14的样本,最终的P-value=(9+1)/(999+1)=0.01。(为什么这样做是一个校正呢?自己思考:))结果表明我们的原假设不成立,加入生长素起到了促使拟南芥的根系发育的作用。

参考资料:

1. http://bcs.whfreeman.com/ips5e/content/cat_080/pdf/moore14.pdf

2. http://jpkc.njmu.edu.cn/course/tongjixue/file/jxzy/tjjz02.htm

3. http://www.r-bloggers.com/lang/chinese/541

附录:R语言求解上例的代码

a<-c(24,43,58,67,61,44,67,49,59,52,62,50,42,43,65,26,33,41,19,54,42,20,17,60,37,42,55,28)

group<-factor(c(rep("A",12),rep("B",16)))

data<-data.frame(group,a)

find.mean<-function(x){

mean(x[group=="A",2])-mean(x[group=="B",2])

}

results<-replicate(999,find.mean(data.frame(group,sample(data[,2]))))

p.value<-length(results[results>mean(data[group=="A",2])-mean(data[group=="B",2])])/1000

hist(results,breaks=20,prob=TRUE)

lines(density(results))

Permutation Test 置换检验(转)的更多相关文章

  1. Permutation test 置换检验

    来源:Public Library of Bioinformatics 显著性检验通常可以告诉我们一个观测值是否是有效的,例如检测两组样本均值差异的假设检验可以告诉我们这两组样本的均值是否相等(或者那 ...

  2. 置换检验(Permutation Test)学习[转载]

    转自:https://www.cnblogs.com/bnuvincent/p/6813785.html http://www.bioinfo-scrounger.com/archives/564 1 ...

  3. Permutation test: p, CI, CI of P 置换检验相关统计量的计算

    For research purpose, I've read a lot materials on permutation test issue. Here is a summary. Should ...

  4. R in action读书笔记(16)第十二章 重抽样与自助法之 置换检验

    第十二章:重抽样与自助法 本章,我们将探究两种应用广泛的依据随机化思想的统计方法:置换检验和自助法 12.1 置换检验 置换检验,也称随机化检验或重随机化检验. 有两种处理条件的实验,十个受试者已经被 ...

  5. Permutation Sequence

    The set [1,2,3,-,n] contains a total of n! unique permutations. By listing and labeling all of the p ...

  6. [LeetCode] Palindrome Permutation II 回文全排列之二

    Given a string s, return all the palindromic permutations (without duplicates) of it. Return an empt ...

  7. [LeetCode] Palindrome Permutation 回文全排列

    Given a string, determine if a permutation of the string could form a palindrome. For example," ...

  8. [LeetCode] Permutation Sequence 序列排序

    The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of the p ...

  9. [LeetCode] Next Permutation 下一个排列

    Implement next permutation, which rearranges numbers into the lexicographically next greater permuta ...

随机推荐

  1. ThreadPool 线程池的作用

    相关概念: 线程池可以看做容纳线程的容器: 一个应用程序最多只能有一个线程池: ThreadPool静态类通过QueueUserWorkItem()方法将工作函数排入线程池: 每排入一个工作函数,就相 ...

  2. [ZZ+CH] Html5 canvas+js 时钟

    总之新Blog入驻以后,又开始老习惯,到处折腾自定义的空间,放些东西. 想起以前大一的时候做过一个Javascript的时间显示器,现在想做一个时钟,当然现在老奸巨猾,会先去看一看有前辈写过没. 前辈 ...

  3. 关于Socket编写简单聊天工具的总结(原创)

    这段时间再看socket编程,虽然现在是刚刚接触,但是还是忍不住想写一篇总结,来激励自己努力学习,写的不好的地方,还请大家指教啊! 下面针对一个简单的发送消息和文件的程序说说吧.   首先是服务器需要 ...

  4. SQL Server如何使用XML格式传输解析

    Sqlserver in 实现 参数化查询 XML类型解决方案 [转] :如果参数是int类型: declare @a xml set @a=' <row><id>1</ ...

  5. Linux编程学习笔记 -- Process

    进程是一个程序的运行.   在一个程序中执行另一个执程序的方法有两种: 1)system 在shell中执行程序 2)fork + exec 复制一个进程,在进程中用新的程序替换原有的程序   for ...

  6. Spark小课堂Week2 Hello Streaming

    Spark小课堂Week2 Hello Streaming 我们是怎么进行数据处理的? 批量方式处理 目前最常采用的是批量方式处理,指非工作时间运行,定时或者事件触发.这种方式的好处是逻辑简单,不影响 ...

  7. 数据可视化(三)- Seaborn简易入门

    本文内容来源:https://www.dataquest.io/mission/133/creating-compelling-visualizations 本文数据来源:http://www.cdc ...

  8. Microsoft Visual Studio Ultimate 2012 旗舰版 有效注册密钥

    Microsoft Visual Studio Ultimate 2012 旗舰版 有效注册密钥: YKCW6-BPFPF-BT8C9-7DCTH-QXGWC 已经过本人测试 本着分享的精神,希望大家 ...

  9. cc2640-各DEMO板性能分析

    一.测试方法: 将4种模块同时上电,测量每个模块达到的最远距离.以稳定能建立通讯为连接上依据.4种板子分析为 1号阿莫DEMO板,2号咱们自己DEMO板,3号嘉源电子DEMO,4号陆程电子DEMO 全 ...

  10. JavaScript 常用方法总结

    经常使用的 JS 方法,今天记下,以便以后查询 /* 手机类型判断 */ var BrowserInfo = { userAgent: navigator.userAgent.toLowerCase( ...