题目链接:http://poj.org/problem?id=3744

  简单的概率DP,分段处理,遇到mine特殊处理。f[i]=f[i-1]*p+f[i-2]*(1-p),i!=w+1,w为mine点。这个概率显然是收敛的,可以转化为(f[i]-f[i-1])/(f[i-1]-f[i-2])=p-1。题目要求精度为1e-7,在分段求的时候我们完全可以控制进度,精度超出了1e-7就不运算下去了。当然此题还可以用矩阵乘法来优化。

  考虑概率收敛代码:

 //STATUS:C++_AC_0MS_164KB
#include <functional>
#include <algorithm>
#include <iostream>
//#include <ext/rope>
#include <fstream>
#include <sstream>
#include <iomanip>
#include <numeric>
#include <cstring>
#include <cassert>
#include <cstdio>
#include <string>
#include <vector>
#include <bitset>
#include <queue>
#include <stack>
#include <cmath>
#include <ctime>
#include <list>
#include <set>
#include <map>
using namespace std;
//#pragma comment(linker,"/STACK:102400000,102400000")
//using namespace __gnu_cxx;
//define
#define pii pair<int,int>
#define mem(a,b) memset(a,b,sizeof(a))
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define PI acos(-1.0)
//typedef
typedef __int64 LL;
typedef unsigned __int64 ULL;
//const
const int N=;
const int INF=0x3f3f3f3f;
const int MOD=,STA=;
const LL LNF=1LL<<;
const double EPS=1e-;
const double OO=1e30;
const int dx[]={-,,,};
const int dy[]={,,,-};
const int day[]={,,,,,,,,,,,,};
//Daily Use ...
inline int sign(double x){return (x>EPS)-(x<-EPS);}
template<class T> T gcd(T a,T b){return b?gcd(b,a%b):a;}
template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;}
template<class T> inline T lcm(T a,T b,T d){return a/d*b;}
template<class T> inline T Min(T a,T b){return a<b?a:b;}
template<class T> inline T Max(T a,T b){return a>b?a:b;}
template<class T> inline T Min(T a,T b,T c){return min(min(a, b),c);}
template<class T> inline T Max(T a,T b,T c){return max(max(a, b),c);}
template<class T> inline T Min(T a,T b,T c,T d){return min(min(a, b),min(c,d));}
template<class T> inline T Max(T a,T b,T c,T d){return max(max(a, b),max(c,d));}
//End double f1,f2,f3;
double p;
int n; int main(){
// freopen("in.txt","r",stdin);
int i,j,w[],ok;
while(~scanf("%d%lf",&n,&p)){
f1=;f2=;
ok=;
for(i=;i<n;i++)scanf("%d",&w[i]);
sort(w,w+n);
for(i=,j=;j<n;j++){
if(w[j]==i)ok=;
for(;i<w[j]- && sign(f2-f1);i++){
f3=f2*p+f1*(-p);
f1=f2,f2=f3;
}
i=w[j]+;
f2*=-p;
f1=;
}
printf("%.7lf\n",ok?f2:0.0);
}
return ;
}

  

  矩阵乘法优化:

 //STATUS:C++_AC_16MS_164KB
#include <functional>
#include <algorithm>
#include <iostream>
//#include <ext/rope>
#include <fstream>
#include <sstream>
#include <iomanip>
#include <numeric>
#include <cstring>
#include <cassert>
#include <cstdio>
#include <string>
#include <vector>
#include <bitset>
#include <queue>
#include <stack>
#include <cmath>
#include <ctime>
#include <list>
#include <set>
#include <map>
using namespace std;
//#pragma comment(linker,"/STACK:102400000,102400000")
//using namespace __gnu_cxx;
//define
#define pii pair<int,int>
#define mem(a,b) memset(a,b,sizeof(a))
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define PI acos(-1.0)
//typedef
typedef __int64 LL;
typedef unsigned __int64 ULL;
//const
const int N=;
const int INF=0x3f3f3f3f;
const int MOD=,STA=;
const LL LNF=1LL<<;
const double EPS=1e-;
const double OO=1e30;
const int dx[]={-,,,};
const int dy[]={,,,-};
const int day[]={,,,,,,,,,,,,};
//Daily Use ...
inline int sign(double x){return (x>EPS)-(x<-EPS);}
template<class T> T gcd(T a,T b){return b?gcd(b,a%b):a;}
template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;}
template<class T> inline T lcm(T a,T b,T d){return a/d*b;}
template<class T> inline T Min(T a,T b){return a<b?a:b;}
template<class T> inline T Max(T a,T b){return a>b?a:b;}
template<class T> inline T Min(T a,T b,T c){return min(min(a, b),c);}
template<class T> inline T Max(T a,T b,T c){return max(max(a, b),c);}
template<class T> inline T Min(T a,T b,T c,T d){return min(min(a, b),min(c,d));}
template<class T> inline T Max(T a,T b,T c,T d){return max(max(a, b),max(c,d));}
//End double p;
int n; const int size=; struct Matrix{
double ma[size][size];
Matrix friend operator * (const Matrix a,const Matrix b){
Matrix ret;
mem(ret.ma,);
int i,j,k;
for(i=;i<size;i++)
for(j=;j<size;j++)
for(k=;k<size;k++)
ret.ma[i][j]=ret.ma[i][j]+a.ma[i][k]*b.ma[k][j];
return ret;
}
}A; Matrix mutilpow(int k)
{
int i,j;
Matrix ret;
mem(ret.ma,);
for(i=;i<size;i++)
ret.ma[i][i]=;
for(;k;k>>=){
if(k&)ret=ret*A;
A=A*A;
}
return ret;
} int main(){
// freopen("in.txt","r",stdin);
int i,j,w[],ok;
Matrix S,t;
double F[];
while(~scanf("%d%lf",&n,&p)){
S.ma[][]=,S.ma[][]=;
S.ma[][]=-p,S.ma[][]=p;
F[]=,F[]=;
ok=;
for(i=;i<n;i++)
scanf("%d",&w[i]);
sort(w,w+n);
for(i=,j=;i<n;i++){
if(w[i]==j){ok=;break;}
A=S;
t=mutilpow(w[i]-j-);
F[]=(t.ma[][]*F[]+t.ma[][]*F[])*(-p);
F[]=;
j=w[i]+;
} printf("%.7lf\n",ok?F[]:0.0);
}
return ;
}

POJ-3744 Scout YYF I 概率DP的更多相关文章

  1. POJ 3744 Scout YYF I 概率dp+矩阵快速幂

    题目链接: http://poj.org/problem?id=3744 Scout YYF I Time Limit: 1000MSMemory Limit: 65536K 问题描述 YYF is ...

  2. poj 3744 Scout YYF I(概率dp,矩阵优化)

    Scout YYF I Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5020   Accepted: 1355 Descr ...

  3. poj 3744 Scout YYF 1 (概率DP+矩阵快速幂)

    F - Scout YYF I Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Sub ...

  4. poj 3744 Scout YYF I(递推求期望)

    poj 3744 Scout YYF I(递推求期望) 题链 题意:给出n个坑,一个人可能以p的概率一步一步地走,或者以1-p的概率跳过前面一步,问这个人安全通过的概率 解法: 递推式: 对于每个坑, ...

  5. POJ 3744 Scout YYF I

    分段的概率DP+矩阵快速幂                        Scout YYF I Time Limit: 1000MS   Memory Limit: 65536K Total Sub ...

  6. poj3744 Scout YYF I[概率dp+矩阵优化]

    Scout YYF I Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8598   Accepted: 2521 Descr ...

  7. POJ3744 Scout YYF I 概率DP+矩阵快速幂

    http://poj.org/problem?id=3744 题意:一条路,起点为1,有概率p走一步,概率1-p跳过一格(不走中间格的走两步),有n个点不能走,问到达终点(即最后一个坏点后)不踩坏点的 ...

  8. POJ 3744 Scout YYF I(矩阵快速幂优化+概率dp)

    http://poj.org/problem?id=3744 题意: 现在有个屌丝要穿越一个雷区,雷分布在一条直线上,但是分布的范围很大,现在这个屌丝从1出发,p的概率往前走1步,1-p的概率往前走2 ...

  9. POJ 3744 Scout YYF I:概率dp

    题目链接:http://poj.org/problem?id=3744 题意: 有n个地雷,位置为pos[i]. 在每个位置,你向前走一步的概率为p,向前走两步的概率为1-p. 你的初始位置为1. 问 ...

随机推荐

  1. solr教程,值得刚接触搜索开发人员一看

    http://blog.csdn.net/awj3584/article/details/16963525 Solr调研总结 开发类型 全文检索相关开发 Solr版本 4.2 文件内容 本文介绍sol ...

  2. define中的:#,##,#@

    [define中的:#,##,#@] #define Conn(x,y) x##y #define ToChar(x) #@x #define ToString(x) #x (2)x##y表示什么?表 ...

  3. HDU4545+LCS

    最长公共子序列. /* LCS 最长公共子序列 */ #include<stdio.h> #include<string.h> #include<stdlib.h> ...

  4. Android 动态Tab分页效果

    当前项目使用的是TabHost+Activity进行分页,目前要做个报表功能,需要在一个Tab页内进行Activity的切换.比方说我有4 个Tab页分别为Tab1,Tab2,Tab3,Tab4,现在 ...

  5. sqlserver查询指定树形结构的所有子节点

    用标准sql的with实现递归查询(sql2005以上肯定支持,sql2000不清楚是否支持): with subqry(id,name,pid) as ( select id,name,pid fr ...

  6. Nginx+uWSGI或fastcgi部署Django项目

    nginx+uWSGI ubuntu下先安装下C编译器和Python环境: sudo apt-get install build-essential python-dev 使用pip安装uWSGI: ...

  7. linux page cache和buffer cache

    主要区别是,buffer cache缓存元信息,page cache缓存文件数据 buffer 与 cache 是作为磁盘文件缓存(磁盘高速缓存disk cache)来使用,主要目的提高文件系统系性能 ...

  8. Android数据存储(三)——SQLite

    如果需要一个更加健壮的数据存储机制,则需要使用一个关系型数据库,在Android上,则为SQLlite. SQLite的特点:轻量级.嵌入式的.关系型数据库.可移植性好,易使用,小,高效且可靠,与使用 ...

  9. 【POJ】3468 A Simple Problem with Integers

    这题用线段树轻松解了,重新用树状数组解,关键点是区间更新.公式推导如下:sum[x] = org_sum[x] + delta[1]*x + delta[2]*(x-1) + delta[x]*1   ...

  10. WPF中映射clr namspace

    1. xaml中直接映射为prefix xmlns:prefix="clr-namespace:MyApplication.Modules.Entity;assembly=MyAssembl ...