1.链接地址:

http://bailian.openjudge.cn/practice/2810/

http://bailian.openjudge.cn/practice/1543/

http://poj.org/problem?id=1543

2.题目:

Perfect Cubes
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 13190   Accepted: 6995

Description

For hundreds of years Fermat's Last Theorem, which stated simply that for n > 2 there exist no integers a, b, c > 1 such that a^n = b^n + c^n, has remained elusively unproven. (A recent proof is believed to be correct, though it is still undergoing scrutiny.) It is possible, however, to find integers greater than 1 that satisfy the "perfect cube" equation a^3 = b^3 + c^3 + d^3 (e.g. a quick calculation will show that the equation 12^3 = 6^3 + 8^3 + 10^3 is indeed true). This problem requires that you write a program to find all sets of numbers {a,b,c,d} which satisfy this equation for a <= N.

Input

One integer N (N <= 100).

Output

The output should be listed as shown below, one perfect cube per line, in non-decreasing order of a (i.e. the lines should be sorted by their a values). The values of b, c, and d should also be listed in non-decreasing order on the line itself. There do exist several values of a which can be produced from multiple distinct sets of b, c, and d triples. In these cases, the triples with the smaller b values should be listed first.

Sample Input

24

Sample Output

Cube = 6, Triple = (3,4,5)
Cube = 12, Triple = (6,8,10)
Cube = 18, Triple = (2,12,16)
Cube = 18, Triple = (9,12,15)
Cube = 19, Triple = (3,10,18)
Cube = 20, Triple = (7,14,17)
Cube = 24, Triple = (12,16,20)

Source

3.思路:

枚举+打表(减少计算次数)

注意a要升序排列,然后b,c,d再升序排列

4.代码:

 #include <iostream>
#include <cstdio> #define START_N 2 using namespace std; int main()
{
int n;
cin>>n; int *arr_cube = new int[n]; int i,j,k,p;
for(i = START_N; i <= n; ++i)
{
arr_cube[i - START_N] = i * i * i;
for(j = START_N; j <= i; ++j)
{
for(k = j; k <= i; ++k)
{
for(p = k; p <= i; ++p)
{
if(arr_cube[i - START_N] == arr_cube[j - START_N]
+ arr_cube[k - START_N] + arr_cube[p - START_N])
{
cout<<"Cube = "<<i<<", Triple = ("<<j<<","<<k<<","<<p<<")"<<endl;
}
}
}
} } delete [] arr_cube;
return ;
}

OpenJudge 2810(1543) 完美立方 / Poj 1543 Perfect Cubes的更多相关文章

  1. 2810:完美立方-poj

    2810:完美立方 总时间限制:  1000ms 内存限制:  65536kB 描述 形如a3= b3 + c3 + d3的等式被称为完美立方等式.例如123= 63 + 83 + 103 .编写一个 ...

  2. OpenJudge计算概论-完美立方【暂时就想到了枚举法了】

    /*===================================== 完美立方 总时间限制: 1000ms 内存限制: 65536kB 描述 a的立方 = b的立方 + c的立方 + d的立 ...

  3. POJ 2810:完美立方

    原题链接 总时间限制: 1000ms 内存限制: 65536kB 描述 形如\(a^{2}\)= \(b^{2}\) + \(c^{2}\) + \(d^{2}\)的等式被称为完美立方等式.例如123 ...

  4. poj 1543 Perfect Cubes(注意剪枝)

    Perfect Cubes Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 14901   Accepted: 7804 De ...

  5. POJ 1543 Perfect Cubes

    Perfect Cubes Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 12595   Accepted: 6707 De ...

  6. poj 1543 Perfect Cubes (暴搜)

    Perfect Cubes Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 15302   Accepted: 7936 De ...

  7. Luogu 1894 [USACO4.2]完美的牛栏The Perfect Stall / POJ 1274 The Perfect Stall(二分图最大匹配)

    Luogu 1894 [USACO4.2]完美的牛栏The Perfect Stall / POJ 1274 The Perfect Stall(二分图最大匹配) Description 农夫约翰上个 ...

  8. OpenJ_Bailian 2810 完美立方

    题目地址: https://vjudge.net/problem/OpenJ_Bailian-2810 形如a3= b3 + c3 + d3的等式被称为完美立方等式.例如123= 63 + 83 + ...

  9. Openjudge-计算概论(A)-完美立方

    描述: a的立方 = b的立方 + c的立方 + d的立方为完美立方等式.例如12的立方 = 6的立方 + 8的立方 + 10的立方 .编写一个程序,对任给的正整数N (N≤100),寻找所有的四元组 ...

随机推荐

  1. c#后台修改前台DOM的css属性

    <div id = 'div1' runat="server">haha</div> ----------- 后台代码中这样调用 div1.Style[&q ...

  2. winform 多线程中ShowDialog()步骤无效的解决办法

    private void Form1_Load(object sender, EventArgs e) { Thread thread = new Thread(remind); thread.IsB ...

  3. sqlninja 说明 (转)

    首先来介绍一下sqlninja的优点. 一个专门针对Microsoft SQL Server的sql注入工具 可找到远程SQL服务器的标志和特征(版本.用户执行的查询.用户特权.xp_cmdshell ...

  4. C#/Access-数据库获取自动编号的最大值

    //conStrSQL你改成你的access,我这里用的SQL2005string conStrSQL = "Data Source=xx.xx.xx.xx;Initial Catalog= ...

  5. Web版RSS阅读器(三)——解析在线Rss订阅

    上篇博客<Web版RSS阅读器(二)——使用dTree树形加载rss订阅分组列表>已经写到读取rss订阅列表了,今天就说一下,当获取一条在线rss订阅的信息,怎么去解析它,从而获取文章或资 ...

  6. hdu4759 Poker Shuffle 2013 ACM/ICPC Asia Regional Changchun Online

    找了很久的规律,只看十进制数字,各种乱七八糟的规律=没规律!看了别人的解题报告,虽然看懂了,可是怎么发现的这个规律呢T.T~想了很久很久~ 以下是转载的别人的图,自己再画太麻烦了~全部看出0~2n-1 ...

  7. Windows下python环境变量配置

    默认情况下,在windows下安装python之后,系统并不会自动添加相应的环境变量.此时不能在命令行直接使用python命令. 1. 首先需要在系统中注册python环境变量:假设python的安装 ...

  8. (转)Dependency Walker使用说明

    在Windows世界中,有无数块活动的大陆,它们都有一个共同的名字——动态链接库.现在就让我们走进这些神奇的活动大陆,找出它们隐藏已久的秘密吧! 初窥门径:Windows的基石 随便打开一个系统目录, ...

  9. mac10.7安装xcode3.2.5和xcode4.2过程和方法

    关于mac10.8安装xcoce3.2.5 五国或者不能成功的原因,看文章的最后部分. 大致浏览一下下面的内容,其实基本都是一样的,第一篇说明多个版本的xcode如何共存,后面的讲述如何安装xcode ...

  10. struts2 CRUD 入门 配置

    本文介绍struts2在eclipse下的配置,实现一个具有CRUD功能的图书管理系统. 1         开发环境配置 1.1           在Eclipse中配置Struts2 1.1.1 ...