1.链接地址:

http://bailian.openjudge.cn/practice/2810/

http://bailian.openjudge.cn/practice/1543/

http://poj.org/problem?id=1543

2.题目:

Perfect Cubes
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 13190   Accepted: 6995

Description

For hundreds of years Fermat's Last Theorem, which stated simply that for n > 2 there exist no integers a, b, c > 1 such that a^n = b^n + c^n, has remained elusively unproven. (A recent proof is believed to be correct, though it is still undergoing scrutiny.) It is possible, however, to find integers greater than 1 that satisfy the "perfect cube" equation a^3 = b^3 + c^3 + d^3 (e.g. a quick calculation will show that the equation 12^3 = 6^3 + 8^3 + 10^3 is indeed true). This problem requires that you write a program to find all sets of numbers {a,b,c,d} which satisfy this equation for a <= N.

Input

One integer N (N <= 100).

Output

The output should be listed as shown below, one perfect cube per line, in non-decreasing order of a (i.e. the lines should be sorted by their a values). The values of b, c, and d should also be listed in non-decreasing order on the line itself. There do exist several values of a which can be produced from multiple distinct sets of b, c, and d triples. In these cases, the triples with the smaller b values should be listed first.

Sample Input

24

Sample Output

Cube = 6, Triple = (3,4,5)
Cube = 12, Triple = (6,8,10)
Cube = 18, Triple = (2,12,16)
Cube = 18, Triple = (9,12,15)
Cube = 19, Triple = (3,10,18)
Cube = 20, Triple = (7,14,17)
Cube = 24, Triple = (12,16,20)

Source

3.思路:

枚举+打表(减少计算次数)

注意a要升序排列,然后b,c,d再升序排列

4.代码:

 #include <iostream>
#include <cstdio> #define START_N 2 using namespace std; int main()
{
int n;
cin>>n; int *arr_cube = new int[n]; int i,j,k,p;
for(i = START_N; i <= n; ++i)
{
arr_cube[i - START_N] = i * i * i;
for(j = START_N; j <= i; ++j)
{
for(k = j; k <= i; ++k)
{
for(p = k; p <= i; ++p)
{
if(arr_cube[i - START_N] == arr_cube[j - START_N]
+ arr_cube[k - START_N] + arr_cube[p - START_N])
{
cout<<"Cube = "<<i<<", Triple = ("<<j<<","<<k<<","<<p<<")"<<endl;
}
}
}
} } delete [] arr_cube;
return ;
}

OpenJudge 2810(1543) 完美立方 / Poj 1543 Perfect Cubes的更多相关文章

  1. 2810:完美立方-poj

    2810:完美立方 总时间限制:  1000ms 内存限制:  65536kB 描述 形如a3= b3 + c3 + d3的等式被称为完美立方等式.例如123= 63 + 83 + 103 .编写一个 ...

  2. OpenJudge计算概论-完美立方【暂时就想到了枚举法了】

    /*===================================== 完美立方 总时间限制: 1000ms 内存限制: 65536kB 描述 a的立方 = b的立方 + c的立方 + d的立 ...

  3. POJ 2810:完美立方

    原题链接 总时间限制: 1000ms 内存限制: 65536kB 描述 形如\(a^{2}\)= \(b^{2}\) + \(c^{2}\) + \(d^{2}\)的等式被称为完美立方等式.例如123 ...

  4. poj 1543 Perfect Cubes(注意剪枝)

    Perfect Cubes Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 14901   Accepted: 7804 De ...

  5. POJ 1543 Perfect Cubes

    Perfect Cubes Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 12595   Accepted: 6707 De ...

  6. poj 1543 Perfect Cubes (暴搜)

    Perfect Cubes Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 15302   Accepted: 7936 De ...

  7. Luogu 1894 [USACO4.2]完美的牛栏The Perfect Stall / POJ 1274 The Perfect Stall(二分图最大匹配)

    Luogu 1894 [USACO4.2]完美的牛栏The Perfect Stall / POJ 1274 The Perfect Stall(二分图最大匹配) Description 农夫约翰上个 ...

  8. OpenJ_Bailian 2810 完美立方

    题目地址: https://vjudge.net/problem/OpenJ_Bailian-2810 形如a3= b3 + c3 + d3的等式被称为完美立方等式.例如123= 63 + 83 + ...

  9. Openjudge-计算概论(A)-完美立方

    描述: a的立方 = b的立方 + c的立方 + d的立方为完美立方等式.例如12的立方 = 6的立方 + 8的立方 + 10的立方 .编写一个程序,对任给的正整数N (N≤100),寻找所有的四元组 ...

随机推荐

  1. ASP终极防下载(转)

    自从搞ASP+ACCESS没少为避免数据库下载而伤过神,网上的奇淫技巧更是数不胜数,本文就是同大家共同探讨各路前辈的留下的秘笈并指中其中的优劣,最后为大家提供一种最佳的解决方案. 一.开篇 自从搞AS ...

  2. js判断字符在另一个字符串中出现次数

    经过搜索验证,提供两个方法. 1. 通过分割获取长度原理 var s = 'www.51qdq.com';var n = (s.split('.')).length-1;alert(n);  //弹出 ...

  3. Compiling aSmack

    For a recent mobile project we used XMPP. It worked really well and I’m keen to use it again. But, i ...

  4. [RxJS] Subject basic

    A Subject is a type that implements both Observer and Observable types. As an Observer, it can subsc ...

  5. js代码 设为首页 加入收藏

    // JavaScript Document // 加入收藏 <a onclick="AddFavorite(window.location,document.title)" ...

  6. Basic Example of JMX Technology--转载

    原文地址:http://nick-lab.gs.washington.edu/java/jdk1.5b/guide/jmx/tutorial/connectors.html Basic Example ...

  7. rust haskell

    http://www.rust-lang.org <null>

  8. svn管理代码在cornerstone上无法添加.a 静态库文件

    有时候.a静态库不能上传到svn的服务器  导致别人拉代码运行不了 这是因为cornerstone设置里面默认不会提交.a文件, 在上图选项栏里是cornerstone默认忽略上传的文件名后缀,在这里 ...

  9. opencv中stitching_detail的运行

    这个拼图并非自带的直接使用sources中的代码.而是把必要的内容放到工程中,改造成自己的图像拼接.参考博文:http://www.tuicool.com/articles/fMbUfaF 该篇博文总 ...

  10. C语言创建并使用dll

    利用C语言创建 利用 C++使用: 参见前面  利用C语言创建并使用lib 如法炮制创建 showDll Dll代码 __declspec(dllexport) double myDivision(i ...