###《Machine Learning》by Andrew NG
点击查看Evernote原文。
#@author: gr
#@date: 2014-10-17
#@email: forgerui@gmail.com
Fundamental
一、 矩阵的迹、秩
矩阵的秩: A的线性无关的极大数目,化简后他的非零项行数
矩阵的迹: 矩阵主对角线上的元素的和。
# 矩阵的迹
trAB = trBA
二、非参数方法
非参数方法是数理统计学的一个分支,一般认为在一个统计推断问题中,如给定或者假定了总体分布的具体形式,只是其中含有若干个参数,要基于来自总体的样本对这些参数做出估计或者进行某种形式的假设检验,这类推断方法称为非参数方法。
三、最小二乘法
最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。
四、中心极限定理
中心极限定理(central limit theorem)是概率论中讨论随机变量序列部分和分布渐近于正态分布的一类定理。这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量积累分布函数逐点收敛到正态分布的积累分布函数的条件。
五、独立同分布(iid)
在概率统计理论中,如果变量序列或者其他随机变量有相同的概率分布,并且互相独立,那么这些随机变量是独立同分布。(independent and identically distributed )
Content
一、机器学习的动机与应用
各种应用。
二、梯度下降
Batch Gradient Descent
Stochastic Gradient Descent
三、欠拟合与过拟合的概念
Linear regresion --> Locally weighted regression
|--> Probabilistic interpretation
|--> Logistic regression
|--> Perception
|--> Neuton's method
四、牛顿方法
Logistic regression
|--> Newton's method
|--> Exponential Family
|--> Generalized Linear Models(GLMs)
五、生成学习方法
Generative learning algorithms
|--> GDA(高斯判别分析)Gaussian Discrimitive Analysis
|--> Gaussian Distribution
|--> Generative & Discriminative comparision
|--> Naive Bayes
|--> Laplace Smoothing
六、朴素贝叶斯算法
Naive Bayes
|--> Event Models
|--> Nerual Networks
|--> Support vector machines
###《Machine Learning》by Andrew NG的更多相关文章
- Coursera课程《Machine Learning》学习笔记(week1)
这是Coursera上比较火的一门机器学习课程,主讲教师为Andrew Ng.在自己看神经网络的过程中也的确发现自己有基础不牢.一些基本概念没搞清楚的问题,因此想借这门课程来个查漏补缺.目前的计划是先 ...
- Coursera《machine learning》--(14)数据降维
本笔记为Coursera在线课程<Machine Learning>中的数据降维章节的笔记. 十四.降维 (Dimensionality Reduction) 14.1 动机一:数据压缩 ...
- Coursera《machine learning》--(8)神经网络表述
本笔记为Coursera在线课程<Machine Learning>中的神经网络章节的笔记. 八.神经网络:表述(Neural Networks: Representation) 本节主要 ...
- Coursera《machine learning》--(2)单变量线性回归(Linear Regression with One Variable)
本笔记为Coursera在线课程<Machine Learning>中的单变量线性回归章节的笔记. 2.1 模型表示 参考视频: 2 - 1 - Model Representation ...
- 《Machine Learning》系列学习笔记之第一周
<Machine Learning>系列学习笔记 第一周 第一部分 Introduction The definition of machine learning (1)older, in ...
- Coursera课程《Machine Learning》吴恩达课堂笔记
强烈安利吴恩达老师的<Machine Learning>课程,讲得非常好懂,基本上算是无基础就可以学习的课程. 课程地址 强烈建议在线学习,而不是把视频下载下来看.视频中间可能会有一些问题 ...
- 《Machine Learning》系列学习笔记之第二周
第二周 第一部分 Multivariate Linear Regression Multiple Features Note: [7:25 - θT is a 1 by (n+1) matrix an ...
- 《Machine Learning》(第一章)序章
关键词:机器学习,基本术语,假设空间,归纳偏好,机器学习用途 一.机器学习概述 机器学习是一门从数据中,经过计算得到模型(Model)的一种过程,得到的模型不仅能反应出训练数据集中所蕴含的规律,并且能 ...
- Coursera课程《Machine Learning》学习笔记(week2)
1 特征 1-1 什么是特征? 我的理解就是,用于描述某个样本点,以哪几个指标来评定,这些个指标就是特征.比方说对于一只鸟,我们评定的指标就可以是:(a)鸟的翅膀大还是小?(b)鸟喙长还是短?(c)鸟 ...
随机推荐
- 第十一章、认识与学习 BASH 数据流重导向
数据流重导向就是将某个命令运行后应该要出现在屏幕上的数据, 给它导向到其他的地方,例如文件或者是装置 (例如打印机之类的)! 什么是数据流重导向 命令运行过程如下: 图 5.1.1.命令运行过程的数据 ...
- mssql函数demo
ALTER FUNCTION [dbo].[f_GetCookType] (@saleDate datetime)RETURNS varchar(6)ASBEGIN declare @cookType ...
- [OC Foundation框架 - 19] 练习遇到的Bugs
1.没有权限读取文件夹 The file “Homework2” couldn’t be opened because you don’t have permission to view it. ...
- MVC4的bundling功能简介
Bundling and Minification是asp.net mvc4中一项可以减少用户请求等待时间,提升用户体验的一项技术.在VS2010中新建MVC4项目是,如果选择"基本&quo ...
- 【AwayPhysics学习笔记】:Away3D物理引擎的简介与使用
首先我们要了解的是AwayPhysics这个物理引擎并不是重头开始写的新物理引擎,而是使用Flascc技术把一个已经很成熟的Bullet物理引擎引入到了Flash中,同时为了让as3可以使用这个C++ ...
- 【Stage3D学习笔记续】山寨Starling(十):高效游戏设计、纹理集和ATF
我发布了经过批处理优化的v0.3版,点击下载:https://github.com/hammerc/hammerc-study-Stage3D/archive/v0.3.zip 先看看我们批处理优化后 ...
- SQL函数中的动态执行语句
一.为什么要使用动态执行语句? 由于在PL/SQL 块或者存储过程中只支持DML语句及控制流语句,并不支持DDL语句,所以Oracle动态执行语句便应允而生了.关于DDL与DML的区别,请参见:DDL ...
- Aizu 2305 Beautiful Currency DP
Beautiful Currency Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hust.edu.cn/vjudge/contest ...
- Cocos2d-x 3.x 资料整理
cocos2d-x-3.0rc0新project的分辨率设置和控制台输出信息 http://kome2000.blog.51cto.com/969562/1379704 Cocos2d-x 3. ...
- 解决Please ensure that adb is correctly located at 'D:\java\sdk\platform-tools\adb.exe' and can be executed.
遇到问题描述: 运行android程序控制台输出 [2012-07-18 16:18:26 - ] The connection to adb is down, and a severe error ...