广播的引出

numpy两个数组的相加、相减以及相乘都是对应元素之间的操作。

import numpy as np
x = np.array([[2,2,3],[1,2,3]])
y = np.array([[1,1,3],[2,2,4]])
print(x*y) #numpy当中的数组相乘是对应元素的乘积,与线性代数当中的矩阵相乘不一样 输入结果如下:
‘‘‘
[[ 2 2 9]
[ 2 4 12]]
‘‘‘

当两个数组的形状并不相同的时候,我们可以通过扩展数组的方法来实现相加、相减、相乘等操作,这种机制叫做广播(broadcasting)。

比如,一个二维数组减去列平均值,来对数组的每一列进行距平化处理:

import numpy as np
arr = np.random.randn(4,3)  #shape(4,3)
arr_mean = arr.mean(0) #shape(3,)
demeaned = arr -arr_mean

很明显上式arr和arr_mean维度并不形同,但是它们可以进行相减操作,这就是通过广播机制来实现的。

广播的原则

如果两个数组的后缘维度(trailing dimension,即从末尾开始算起的维度)的轴长度相符,或其中的一方的长度为1,则认为它们是广播兼容的。广播会在缺失和(或)长度为1的维度上进行。

这句话乃是理解广播的核心。广播主要发生在两种情况,一种是两个数组的维数不相等,但是它们的后缘维度的轴长相符,另外一种是有一方的长度为1。

数组维度不同,后缘维度的轴长相符

我们来看一个例子:

import numpy as np

arr1 = np.array([[0, 0, 0],[1, 1, 1],[2, 2, 2], [3, 3, 3]])  #arr1.shape = (4,3)
arr2 = np.array([1, 2, 3]) #arr2.shape = (3,)
arr_sum = arr1 + arr2
print(arr_sum) 输入结果如下:
‘‘‘
[[1 2 3]
[2 3 4]
[3 4 5]
[4 5 6]]
‘‘‘

上例中arr1的shape为(4,3),arr2的shape为(3,)。可以说前者是二维的,而后者是一维的。但是它们的后缘维度相等,arr1的第二维长度为3,和arr2的维度相同。arr1和arr2的shape并不一样,但是它们可以执行相加操作,这就是通过广播完成的,在这个例子当中是将arr2沿着0轴进行扩展。

上面程序当中的广播如下图所示:

同样的例子还有:

从上面的图可以看到,(3,4,2)和(4,2)的维度是不相同的,前者为3维,后者为2维。但是它们后缘维度的轴长相同,都为(4,2),所以可以沿着0轴进行广播。

同样,还有一些例子:(4,2,3)和(2,3)是兼容的,(4,2,3)还和(3)是兼容的,后者需要在两个轴上面进行扩展。

数组维度相同,其中有个轴为1

我们来看下面的例子:

import numpy as np

arr1 = np.array([[0, 0, 0],[1, 1, 1],[2, 2, 2], [3, 3, 3]])  #arr1.shape = (4,3)
arr2 = np.array([[1],[2],[3],[4]]) #arr2.shape = (4, 1) arr_sum = arr1 + arr2
print(arr_sum) 输出结果如下:
[[1 1 1]
[3 3 3]
[5 5 5]
[7 7 7]]

arr1的shape为(4,3),arr2的shape为(4,1),它们都是二维的,但是第二个数组在1轴上的长度为1,所以,可以在1轴上面进行广播,如下图所示:

  在这种情况下,两个数组的维度要保证相等,其中有一个轴的长度为1,这样就会沿着长度为1的轴进行扩展。这样的例子还有:(4,6)和(1,6) 。(3,5,6)和(1,5,6)、(3,1,6)、(3,5,1),后面三个分别会沿着0轴,1轴,2轴进行广播。

后话:还有上面两种结合的情况,如(3,5,6)和(1,6)是可以相加的。在TensorFlow当中计算张量的时候也是用广播机制,并且和numpy的广播机制是一样的。

numpy和tensorflow中的广播机制的更多相关文章

  1. Numpy中的广播机制,数组的广播机制(Broadcasting)

    这篇文章把numpy中的广播机制讲的十分透彻: https://jakevdp.github.io/PythonDataScienceHandbook/02.05-computation-on-arr ...

  2. TensorFlow中的通信机制——Rendezvous(一)本地传输

    背景 [作者:DeepLearningStack,阿里巴巴算法工程师,开源TensorFlow Contributor] 在TensorFlow源码中我们经常能看到一个奇怪的词——Rendezvous ...

  3. Android 中的广播机制

    Android 中的广播机制 Android 中的广播,按照广播响应范围,可以分为应用内广播和全局广播.按照广播的接收方式,可以分为标准广播和有序广播. 广播的分类 响应范围 应用内广播:此类广播只能 ...

  4. numpy中的广播机制

    广播的引出 numpy两个数组的相加.相减以及相乘都是对应元素之间的操作. import numpy as np x = np.array([[2,2,3],[1,2,3]]) y = np.arra ...

  5. Effective TensorFlow Chapter 4: TensorFlow中的广播Broadcast机制【转】

    本文转载自:https://blog.csdn.net/LoseInVain/article/details/78763303 TensorFlow支持广播机制(Broadcast),可以广播元素间操 ...

  6. Numpy 系列(八)- 广播机制

    什么是广播 我们都知道,Numpy中的基本运算(加.减.乘.除.求余等等)都是元素级别的,但是这仅仅局限于两个数组的形状相同的情况下. 可是大家又会发现,如果让一个数组加1的话,结果时整个数组的结果都 ...

  7. Android中使用广播机制退出多个Activity

    谷歌百度一下,Android中退出多个Activity的方法,大家讨论的很多. 在实习的时候,看到公司的项目退出多个Activity,是采用LinkedList方法,毕业设计的时候,也参照了那种方法. ...

  8. TensorFlow中的通信机制——Rendezvous(二)gRPC传输

    背景 [作者:DeepLearningStack,阿里巴巴算法工程师,开源TensorFlow Contributor] 本篇是TensorFlow通信机制系列的第二篇文章,主要梳理使用gRPC网络传 ...

  9. Android框架中的广播机制

    一.广播通过Intent发送出去 // 定义广播的意图过滤器 private String action = "com.xxx.demo.Broadcast.STATUS_CHANGED&q ...

随机推荐

  1. python之封装

    封装的主要原因是保护隐私,隔离复杂度 封装分为两个层面: 第一个层面的封装(什么都不用做):创建类和对象会分别创建二者的名称精简,我们只能用类名.或者obj.的方式去访问里面的名字,这本身就是一种分装 ...

  2. Accumulator<Long> implements of JavaSparkContext in Spark1.x

    As we all know , up to Spark 1.6.2, JavaSparkContext only provides two kinds of accumulators: Intege ...

  3. IDEA 下载 和 安装

    1. IDEA 下载 网址     pttps://www.jetbrains.com IDEA      优点  :高度集成企业软件工程的概念(svn, git) 缺点: 破解存在在法律风险 ; E ...

  4. lettcode21. Merge Two Sorted Lists

    lettcode21. Merge Two Sorted Lists Merge two sorted linked lists and return it as a new list. The ne ...

  5. openstack 之~keystone之网关协议

    第一:静态页面和动态页面 上一篇博客介绍了HTTP后,我们知道一个web server的本质就是 浏览器发送一个HTTP请求: 服务器收到请求,生成一个HTML文档: 服务器把HTML文档作为HTTP ...

  6. ASP.NET C# 实现钉钉签名算法

    在 https://open-doc.dingtalk.com/microapp/faquestions/hxs5v9 钉钉给出了JAVA/PHP算法,下面是C#算法 using System.Sec ...

  7. Centos yum国内源及配置含义

    Centos yum源的位置: /etc/yum.repos.d,可以通过配置文件/etc/yum.conf指定其他位置 主要的yum源种类:前两个是必须的,不然yum安装很多软件时会失败.yum本来 ...

  8. Glide4 用法总结 MD

    Markdown版本笔记 我的GitHub首页 我的博客 我的微信 我的邮箱 MyAndroidBlogs baiqiantao baiqiantao bqt20094 baiqiantao@sina ...

  9. 将 Smart 构件发布到 Maven 中央仓库

    https://my.oschina.net/huangyong/blog/226738

  10. Python import其他文件夹的文件

    一般情况下,import的文件和被import的文件在同一个路径下面,import也比较方便.如果这两个文件不在一个路径下面,import就比较麻烦了,需要在被import的文件路径下面新建一个__i ...