[BZOJ2125]最短路[圆方树]
题意
给定仙人掌,多次询问两点之间的最短路径。
\(n\le 10000, Q\le 10000\)
分析
- 建出圆方树,分路径 lca 是圆点还是方点讨论。
- 预处理出根圆点到每个圆点的最短距离 \(dis\) 。
- 如果 lca 是圆点,那么最短距离就是 \(dis_a+dis_b-2*dis_{lca}\)。
- 否则找到 lca 到 a, b 路径上的第一个圆点 x, y,最短距离即 \(dis_a-dis_x+dis_b-dis_y+dist(x, y)\) 。其中 \(dist(x, y)\) 表示在同一个环中的两个节点 \(x, y\) 之间的最短距离。
- 复杂度 \(O(nlogn+Qlogn)\) 。
代码
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
#define go(u) for(int i = head[u], v = e[i].to; i; i=e[i].lst, v=e[i].to)
#define rep(i, a, b) for(int i = a; i <= b; ++i)
#define pb push_back
#define re(x) memset(x, 0, sizeof x)
inline int gi() {
int x = 0,f = 1;
char ch = getchar();
while(!isdigit(ch)) { if(ch == '-') f = -1; ch = getchar();}
while(isdigit(ch)) { x = (x << 3) + (x << 1) + ch - 48; ch = getchar();}
return x * f;
}
template <typename T> inline bool Max(T &a, T b){return a < b ? a = b, 1 : 0;}
template <typename T> inline bool Min(T &a, T b){return a > b ? a = b, 1 : 0;}
const int N = 2e4 + 7;
int n, m, edc, dfn, tp, ndc, ans, Q;
int low[N], pre[N], stk[N], f[N][2], head[N];
int up[N][18], s[N], dis[N], tot[N], dep[N];
vector<int>G[N];
map<pair<int, int>, int> dist;
struct edge {
int lst, to;
edge(){}edge(int lst, int to):lst(lst), to(to){}
}e[N << 1];
void Add(int a, int b) {
e[++edc] = edge(head[a], b), head[a] = edc;
e[++edc] = edge(head[b], a), head[b] = edc;
}
void tarjan(int u, int fa) {
low[u] = pre[u] = ++dfn;
stk[++tp] = u;
go(u)if(v ^ fa) {
if(!low[v]) {
tarjan(v, u);
Min(pre[u], pre[v]);
if(pre[v] >= low[u]) {
G[u].pb(++ndc);
for(int x = -1; x ^ v; )
G[ndc].pb(x = stk[tp--]);
}
}else Min(pre[u], low[v]);
}
}
#define mp make_pair
void dfs(int u, int fa) {
up[u][0] = fa;
for(int i = 1; i <= 17; ++i) up[u][i] = up[up[u][i - 1]][i - 1];
if(u > n) {
tot[u] += dist[mp(fa, G[u][0])];
s[G[u][0]] = dist[mp(fa, G[u][0])];
for(int i = 1; i < G[u].size(); ++i) {
s[G[u][i]] = s[G[u][i - 1]] + dist[mp(G[u][i - 1], G[u][i])];
tot[u] += dist[mp(G[u][i - 1], G[u][i])];
}
tot[u] += dist[mp(fa, G[u][G[u].size() - 1])];
}
for(int i = 0; i < G[u].size(); ++i) {
int v = G[u][i];
dep[v] = dep[u] + 1;
if(u > n) dis[v] = dis[fa] + min(s[v], tot[u] - s[v]);
dfs(v, u);
}
}
int get(int a, int b) {
if(a == b) return 0;
if(dep[a] > dep[b]) swap(a, b);
int x = a, y = b;
for(int i = 17; ~i; --i) if(dep[up[b][i]] >= dep[a]) b = up[b][i];
if(a == b) {
b = y;
for(int i = 17; ~i; --i) if(dep[up[b][i]] > dep[a]) b = up[b][i];
if(a <= n) return dis[y] - dis[a];
return dis[y] - dis[b];
}
for(int i = 17; ~i; --i) if(up[a][i] != up[b][i]){
a = up[a][i];
b = up[b][i];
}
int lca = up[a][0];
if(lca <= n) {
return dis[x] + dis[y] - 2 * dis[lca];
}else {
return dis[x] - dis[a] + dis[y] - dis[b] + min(abs(s[b] - s[a]), tot[lca] - abs(s[b] - s[a]));
}
}
int main() {
n = gi(), m = gi();Q = gi();ndc = n;
rep(i, 1, m) {
int a = gi(), b = gi(), c = gi();
Add(a, b);
dist[make_pair(a, b)] = dist[make_pair(b, a)] = c;
}
tarjan(1, 0);
dep[1] = 1, dfs(1, 0);
while(Q--) {
int a = gi(), b = gi();
printf("%d\n", get(a, b));
}
return 0;
}
[BZOJ2125]最短路[圆方树]的更多相关文章
- [BZOJ2125]最短路(圆方树DP)
题意:仙人掌图最短路. 算法:圆方树DP,$O(n\log n+Q\log n)$ 首先建出仙人掌圆方树(与点双圆方树的区别在于直接连割边,也就是存在圆圆边),然后考虑点u-v的最短路径,显然就是:在 ...
- BZOJ2125 最短路 圆方树、倍增
传送门 对仙人掌建立圆方树,然后对边定权 对于圆点和圆点之间的边,是原来仙人掌上的桥,边权保持不变 对于圆点和方点之间的边,将圆方树看做以一个圆点为根的有根树之后,一个方点的父亲一定是一个圆点.对于这 ...
- 【BZOJ】2125: 最短路 圆方树(静态仙人掌)
[题意]给定带边权仙人掌图,Q次询问两点间最短距离.n,m,Q<=10000 [算法]圆方树处理仙人掌问题 [题解]树上的两点间最短路问题,常用倍增求LCA解决,考虑扩展到仙人掌图. 先对仙人掌 ...
- 仙人掌&圆方树学习笔记
仙人掌&圆方树学习笔记 1.仙人掌 圆方树用来干啥? --处理仙人掌的问题. 仙人掌是啥? (图片来自于\(BZOJ1023\)) --也就是任意一条边只会出现在一个环里面. 当然,如果你的图 ...
- 【BZOJ2125】最短路(仙人掌,圆方树)
[BZOJ2125]最短路(仙人掌,圆方树) 题面 BZOJ 求仙人掌上两点间的最短路 题解 终于要构建圆方树啦 首先构建出圆方树,因为是仙人掌,和一般图可以稍微的不一样 直接\(tarjan\)缩点 ...
- 2018.07.25 bzoj2125: 最短路(圆方树+倍增)
传送门 人生的第一道仙人掌. 这道题求是仙人掌上的最短路. 先建出圆方树,然后用倍增跑最短路,当lca" role="presentation" style=" ...
- bzoj 2125 最短路 点双 圆方树
LINK:最短路 一张仙人掌图 求图中两点最短路. \(n<=10000,Q<=10000,w>=1\) 考虑边数是多少 m>=n-1 对于一张仙人掌图 考虑先构建出来dfs树 ...
- BZOJ.2125.最短路(仙人掌 圆方树)
题目链接 圆方树.做题思路不写了.. 就是当LCA是方点时跳进那个环可以分类讨论一下用树剖而不必须用倍增: 如果v是u的(唯一的那个)重儿子,那么u的DFS序上+1的点即是要找的:否则v会引出一条新的 ...
- 图论杂项细节梳理&模板(虚树,圆方树,仙人掌,欧拉路径,还有。。。)
orzYCB 虚树 %自为风月马前卒巨佬% 用于优化一类树形DP问题. 当状态转移只和树中的某些关键点有关的时候,我们把这些点和它们两两之间的LCA弄出来,以点的祖孙关系连成一棵新的树,这就是虚树. ...
随机推荐
- Django基础篇--用户权限管理和组管理
Django作为一个成熟的python后台开发框架,为开发者提供了很多内置的功能,开发者只需要做一些配置就可以完成原生操作中比较复杂的代码编写.这些内置功能中其中一个比较强大的功能就是后台用户管理类. ...
- 输入两个整数n和m,从数列1,2,3,……n中随意取几个数,使其和等于m
题目:编程求解,输入两个整数n和m,从数列1,2,3,……n中随意取几个数,使其和等于m.要求将所有的可能组合列出来. 分析:分治的思想.可以把问题(m,n)拆分(m - n, n -1)和(m, n ...
- Java:构造代码块,静态代码块
本文内容: 局部代码块 构造代码块 静态代码块 补充 首发日期:2018-03-28 局部代码块: 局部代码块用于限制变量的生命周期,如果希望某些变量在某一过程之后直接失效而不希望被后面继续操作时,可 ...
- JavaScript大杂烩18 - Web开发的MVVM模式
MVC VS. MVP VS. MVVM 了解MVVM模式之前,我们先来简单了解一下从MVC到MVVM的变迁.这个变迁是耦合从紧到松的变迁,是对依赖处理的进化,是应对变化技术的成熟. MVC MV ...
- python利用Trie(前缀树)实现搜索引擎中关键字输入提示(学习Hash Trie和Double-array Trie)
python利用Trie(前缀树)实现搜索引擎中关键字输入提示(学习Hash Trie和Double-array Trie) 主要包括两部分内容:(1)利用python中的dict实现Trie:(2) ...
- Python实现批量梯度下降算法
# -*- coding: UTF-8 -*- import numpy as npimport math # 定义基础变量learning_rate = 0.1n_iterations = 1000 ...
- Fiddler查看接口响应时间
有时候,某些接口访问过慢,我们需要测试接口查看响应时间,从而进行优化.(由于fiddler自带的没有进行响应时间的统计,所以我们需要给他添加新的规则) 首先打开Fiddler,在菜单栏上面找到Rule ...
- python第九十天----jquery
jQuery http://jquery.cuishifeng.cn/ 相当于js的模块,类库 DOM/BOM/JavaScript的类库 一.查找元素 jQuery 选择器 直接找到某个或者某个标签 ...
- EasyUI报错 $(...).accordion is not a function
参考资料: https://stackoverflow.com/questions/9017634/accordion-is-not-a-function 原因:加载了2次jquery js文件
- PCA与KPCA
PCA是利用特征的协方差矩阵判断变量间的方差一致性,寻找出变量之间的最佳的线性组合,来代替特征,从而达到降维的目的,但从其定义和计算方式中就可以看出,这是一种线性降维的方法,如果特征之间的关系是非线性 ...