A rooted tree is a well-known data structure in computer science and engineering. An example is shown below:

In the figure, each node is labeled with an integer from {1, 2,...,16}. Node 8 is the root of the tree. Node x is an ancestor of node y if node x is in the path between the root and node y. For example, node 4 is an ancestor of node 16. Node 10 is also an ancestor of node 16. As a matter of fact, nodes 8, 4, 10, and 16 are the ancestors of node 16. Remember that a node is an ancestor of itself. Nodes 8, 4, 6, and 7 are the ancestors of node 7. A node x is called a common ancestor of two different nodes y and z if node x is an ancestor of node y and an ancestor of node z. Thus, nodes 8 and 4 are the common ancestors of nodes 16 and 7. A node x is called the nearest common ancestor of nodes y and z if x is a common ancestor of y and z and nearest to y and z among their common ancestors. Hence, the nearest common ancestor of nodes 16 and 7 is node 4. Node 4 is nearer to nodes 16 and 7 than node 8 is.

For other examples, the nearest common ancestor of nodes 2 and 3 is node 10, the nearest common ancestor of nodes 6 and 13 is node 8, and the nearest common ancestor of nodes 4 and 12 is node 4. In the last example, if y is an ancestor of z, then the nearest common ancestor of y and z is y.

Write a program that finds the nearest common ancestor of two distinct nodes in a tree.

Input

The input consists of T test cases. The number of test cases (T) is given in the first line of the input file. Each test case starts with a line containing an integer N , the number of nodes in a tree, 2<=N<=10,000. The nodes are labeled with integers 1, 2,..., N. Each of the next N -1 lines contains a pair of integers that represent an edge --the first integer is the parent node of the second integer. Note that a tree with N nodes has exactly N - 1 edges. The last line of each test case contains two distinct integers whose nearest common ancestor is to be computed.

Output

Print exactly one line for each test case. The line should contain the integer that is the nearest common ancestor.

Sample Input

2

16

1 14

8 5

10 16

5 9

4 6

8 4

4 10

1 13

6 15

10 11

6 7

10 2

16 3

8 1

16 12

16 7

5

2 3

3 4

3 1

1 5

3 5

Sample Output

4

3

LCA模板套上去就好了

#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include <iomanip>
#include<cmath>
#include<float.h>
#include<string.h>
#include<algorithm>
#define sf scanf
#define scf(x) scanf("%d",&x)
#define pf printf
#define prf(x) printf("%d\n",x)
#define mm(x,b) memset((x),(b),sizeof(x))
#include<vector>
#include<queue>
#include<map>
#define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=a;i>=n;i--)
typedef long long ll;
const ll mod=1e9+100;
const double eps=1e-8;
using namespace std;
const double pi=acos(-1.0);
const int inf=0xfffffff;
const int N = 1010;
int rmq[2*N];//rmq数组,就是欧拉序列对应的深度序列
struct ST
{
int mm[2*N];
int dp[2*N][20];//最小值对应的下标
void init(int n)
{
mm[0] = -1;
for(int i = 1;i <= n;i++)
{
mm[i] = ((i&(i-1)) == 0)?mm[i-1]+1:mm[i-1];
dp[i][0] = i;
}
for(int j = 1; j <= mm[n];j++)
for(int i = 1; i + (1<<j) - 1 <= n; i++)
dp[i][j] = rmq[dp[i][j-1]] < rmq[dp[i+(1<<(j-1))][j-1]]?dp[i][j-1]:dp[i+(1<<(j-1))][j-1];
}
int query(int a,int b)//查询[a,b]之间最小值的下标
{
if(a > b) swap(a,b);
int k = mm[b-a+1];
return rmq[dp[a][k]] <= rmq[dp[b-(1<<k)+1][k]]?dp[a][k]:dp[b-(1<<k)+1][k];
}
};
//边的结构体定义
struct Edge
{
int to,next;
};
Edge edge[N*2];
int tot,head[N]; int F[N*2];//欧拉序列,就是dfs遍历的顺序,长度为2*n-1,下标从1开始
int P[N];//P[i]表示点i在F中第一次出现的位置
int cnt; ST st;
void init()
{
tot = 0;
memset(head,-1,sizeof(head));
}
void addedge(int u,int v)//加边,无向边需要加两次
{
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot++;
}
void dfs(int u,int pre,int dep)
{
F[++cnt] = u;
rmq[cnt] = dep;
P[u] = cnt;
for(int i = head[u];i != -1;i = edge[i].next)
{
int v = edge[i].to;
if(v == pre)continue;
dfs(v,u,dep+1);
F[++cnt] = u;
rmq[cnt] = dep;
}
}
void LCA_init(int root,int node_num)//查询LCA前的初始化
{
cnt = 0;
dfs(root,root,0);
st.init(2*node_num-1);
}
int query_lca(int u,int v)//查询u,v的lca编号
{
return F[st.query(P[u],P[v])];
}
bool root[N];
int main()
{
int n,m,num,v,u;
while(~scff(n,m))//n个点,m个查询点
{
init();
mm(sum,0);
mm(root,true);
rep(i,1,n)
{
sf("%d %d",&u,&v);
addedge(u,v);
addedge(v,u);
root[v]=false;
}
int temp;
rep(i,1,n+1)
{
if(root[i])
{
temp=i;break;
}
}
LCA_init(temp,n);
while(m--)
{
while(getchar()!='(') ;
scanf("%d%d",&u,&v);
while(getchar()!=')') ;
sum[query_lca(u,v)]++;
}
rep(i,1,n+1)
{
if(sum[i])
pf("%d:%d\n",i,sum[i]);
}
}
return 0;
}

D - Nearest Common Ancestors的更多相关文章

  1. POJ 1330 Nearest Common Ancestors(Targin求LCA)

    传送门 Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 26612   Ac ...

  2. [最近公共祖先] POJ 1330 Nearest Common Ancestors

    Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 27316   Accept ...

  3. POJ 1330 Nearest Common Ancestors

    Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 14698   Accept ...

  4. POJ1330 Nearest Common Ancestors

      Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 24587   Acce ...

  5. POJ 1330 Nearest Common Ancestors(Tree)

    题目:Nearest Common Ancestors 根据输入建立树,然后求2个结点的最近共同祖先. 注意几点: (1)记录每个结点的父亲,比较层级时要用: (2)记录层级: (3)记录每个结点的孩 ...

  6. 【POJ】1330 Nearest Common Ancestors ——最近公共祖先(LCA)

    Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 18136   Accept ...

  7. POJ 1330 Nearest Common Ancestors LCA题解

    Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 19728   Accept ...

  8. POJ - 1330 Nearest Common Ancestors(基础LCA)

    POJ - 1330 Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000KB   64bit IO Format: %l ...

  9. POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA)

    POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA) Description A ...

  10. pku 1330 Nearest Common Ancestors LCA离线

    pku 1330 Nearest Common Ancestors 题目链接: http://poj.org/problem?id=1330 题目大意: 给定一棵树的边关系,注意是有向边,因为这个WA ...

随机推荐

  1. CentOS下双网卡双IP不同IP段配置

    环境: eth0:10.0.7.2  gw :10.0.7.254 netmask:255.255.255.0 eth1:168.6.101.2    gw :168.6.101.254    net ...

  2. x264阅读记录-2

    x264阅读记录-2 7. x264_encoder_encode函数-1 查看该函数代码(Encoder.c文件)可以发现,该函数中注释很详细,对编码的整个步骤展示的也相对比较清晰. 在查看具体的代 ...

  3. springboot 注解整理

    项目用到的注解作用: bean的分类标识@Service: 注解在类上,表示这是一个业务层bean@Controller:注解在类上,表示这是一个控制层bean@Repository: 注解在类上,表 ...

  4. 超过 130 个你需要了解的 vim 命令

    从 1970 年开始,vi 和 vim 就成为了程序员最喜爱的文本编辑器之一.5年前,我写了一个问自己名为 “每个程序员都应该知道的 100 个 vim 命令” 这次算是之前那篇文章的改进版,希望你会 ...

  5. python3 图片文字识别

    最近用到了图片文字识别这个功能,从网上搜查了一下,决定利用百度的文字识别接口.通过测试发现文字识别率还可以.下面就测试过程简要说明一下 1.注册用户 链接:https://login.bce.baid ...

  6. Session variables lost after the call of Response.Redirect method

    From:  https://forums.asp.net/t/2096848.aspx?Session+variables+lost+after+the+call+of+Response+Redir ...

  7. angular 2 - 004 routing 路由

    https://angular.io/tutorial/toh-pt5 定义一个模块用来定义路由 src/app/app-routing.module.ts import { NgModule } f ...

  8. SpringBoot2.0针对请求参数@RequestBody验证统一拦截

    title: "SpringBoot2.0针对请求参数@RequestBody验证的统一拦截"categories: SpringBoot2.0 Shirotags: Spring ...

  9. ROM后缀含义

    ROM files, unless altered by the uploader, always have special suffixes to quickly denote what the s ...

  10. Swift中关于集合计算的几种函数记录(intersect、symmetricDifference、union、subtract)

    很久之前用过一次,后来就忘了...扎心,现在记录一下 PS:这几种函数其实不限于swift内的,在JavaScript.python.DB等其他语言,应该也有类似用法,这里我只简单讲了在swift内的 ...