A rooted tree is a well-known data structure in computer science and engineering. An example is shown below:

In the figure, each node is labeled with an integer from {1, 2,...,16}. Node 8 is the root of the tree. Node x is an ancestor of node y if node x is in the path between the root and node y. For example, node 4 is an ancestor of node 16. Node 10 is also an ancestor of node 16. As a matter of fact, nodes 8, 4, 10, and 16 are the ancestors of node 16. Remember that a node is an ancestor of itself. Nodes 8, 4, 6, and 7 are the ancestors of node 7. A node x is called a common ancestor of two different nodes y and z if node x is an ancestor of node y and an ancestor of node z. Thus, nodes 8 and 4 are the common ancestors of nodes 16 and 7. A node x is called the nearest common ancestor of nodes y and z if x is a common ancestor of y and z and nearest to y and z among their common ancestors. Hence, the nearest common ancestor of nodes 16 and 7 is node 4. Node 4 is nearer to nodes 16 and 7 than node 8 is.

For other examples, the nearest common ancestor of nodes 2 and 3 is node 10, the nearest common ancestor of nodes 6 and 13 is node 8, and the nearest common ancestor of nodes 4 and 12 is node 4. In the last example, if y is an ancestor of z, then the nearest common ancestor of y and z is y.

Write a program that finds the nearest common ancestor of two distinct nodes in a tree.

Input

The input consists of T test cases. The number of test cases (T) is given in the first line of the input file. Each test case starts with a line containing an integer N , the number of nodes in a tree, 2<=N<=10,000. The nodes are labeled with integers 1, 2,..., N. Each of the next N -1 lines contains a pair of integers that represent an edge --the first integer is the parent node of the second integer. Note that a tree with N nodes has exactly N - 1 edges. The last line of each test case contains two distinct integers whose nearest common ancestor is to be computed.

Output

Print exactly one line for each test case. The line should contain the integer that is the nearest common ancestor.

Sample Input

2

16

1 14

8 5

10 16

5 9

4 6

8 4

4 10

1 13

6 15

10 11

6 7

10 2

16 3

8 1

16 12

16 7

5

2 3

3 4

3 1

1 5

3 5

Sample Output

4

3

LCA模板套上去就好了

#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include <iomanip>
#include<cmath>
#include<float.h>
#include<string.h>
#include<algorithm>
#define sf scanf
#define scf(x) scanf("%d",&x)
#define pf printf
#define prf(x) printf("%d\n",x)
#define mm(x,b) memset((x),(b),sizeof(x))
#include<vector>
#include<queue>
#include<map>
#define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=a;i>=n;i--)
typedef long long ll;
const ll mod=1e9+100;
const double eps=1e-8;
using namespace std;
const double pi=acos(-1.0);
const int inf=0xfffffff;
const int N = 1010;
int rmq[2*N];//rmq数组,就是欧拉序列对应的深度序列
struct ST
{
int mm[2*N];
int dp[2*N][20];//最小值对应的下标
void init(int n)
{
mm[0] = -1;
for(int i = 1;i <= n;i++)
{
mm[i] = ((i&(i-1)) == 0)?mm[i-1]+1:mm[i-1];
dp[i][0] = i;
}
for(int j = 1; j <= mm[n];j++)
for(int i = 1; i + (1<<j) - 1 <= n; i++)
dp[i][j] = rmq[dp[i][j-1]] < rmq[dp[i+(1<<(j-1))][j-1]]?dp[i][j-1]:dp[i+(1<<(j-1))][j-1];
}
int query(int a,int b)//查询[a,b]之间最小值的下标
{
if(a > b) swap(a,b);
int k = mm[b-a+1];
return rmq[dp[a][k]] <= rmq[dp[b-(1<<k)+1][k]]?dp[a][k]:dp[b-(1<<k)+1][k];
}
};
//边的结构体定义
struct Edge
{
int to,next;
};
Edge edge[N*2];
int tot,head[N]; int F[N*2];//欧拉序列,就是dfs遍历的顺序,长度为2*n-1,下标从1开始
int P[N];//P[i]表示点i在F中第一次出现的位置
int cnt; ST st;
void init()
{
tot = 0;
memset(head,-1,sizeof(head));
}
void addedge(int u,int v)//加边,无向边需要加两次
{
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot++;
}
void dfs(int u,int pre,int dep)
{
F[++cnt] = u;
rmq[cnt] = dep;
P[u] = cnt;
for(int i = head[u];i != -1;i = edge[i].next)
{
int v = edge[i].to;
if(v == pre)continue;
dfs(v,u,dep+1);
F[++cnt] = u;
rmq[cnt] = dep;
}
}
void LCA_init(int root,int node_num)//查询LCA前的初始化
{
cnt = 0;
dfs(root,root,0);
st.init(2*node_num-1);
}
int query_lca(int u,int v)//查询u,v的lca编号
{
return F[st.query(P[u],P[v])];
}
bool root[N];
int main()
{
int n,m,num,v,u;
while(~scff(n,m))//n个点,m个查询点
{
init();
mm(sum,0);
mm(root,true);
rep(i,1,n)
{
sf("%d %d",&u,&v);
addedge(u,v);
addedge(v,u);
root[v]=false;
}
int temp;
rep(i,1,n+1)
{
if(root[i])
{
temp=i;break;
}
}
LCA_init(temp,n);
while(m--)
{
while(getchar()!='(') ;
scanf("%d%d",&u,&v);
while(getchar()!=')') ;
sum[query_lca(u,v)]++;
}
rep(i,1,n+1)
{
if(sum[i])
pf("%d:%d\n",i,sum[i]);
}
}
return 0;
}

D - Nearest Common Ancestors的更多相关文章

  1. POJ 1330 Nearest Common Ancestors(Targin求LCA)

    传送门 Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 26612   Ac ...

  2. [最近公共祖先] POJ 1330 Nearest Common Ancestors

    Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 27316   Accept ...

  3. POJ 1330 Nearest Common Ancestors

    Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 14698   Accept ...

  4. POJ1330 Nearest Common Ancestors

      Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 24587   Acce ...

  5. POJ 1330 Nearest Common Ancestors(Tree)

    题目:Nearest Common Ancestors 根据输入建立树,然后求2个结点的最近共同祖先. 注意几点: (1)记录每个结点的父亲,比较层级时要用: (2)记录层级: (3)记录每个结点的孩 ...

  6. 【POJ】1330 Nearest Common Ancestors ——最近公共祖先(LCA)

    Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 18136   Accept ...

  7. POJ 1330 Nearest Common Ancestors LCA题解

    Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 19728   Accept ...

  8. POJ - 1330 Nearest Common Ancestors(基础LCA)

    POJ - 1330 Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000KB   64bit IO Format: %l ...

  9. POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA)

    POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA) Description A ...

  10. pku 1330 Nearest Common Ancestors LCA离线

    pku 1330 Nearest Common Ancestors 题目链接: http://poj.org/problem?id=1330 题目大意: 给定一棵树的边关系,注意是有向边,因为这个WA ...

随机推荐

  1. RMQ(Range MinimumQuery)问题之ST算法

    ST算法------是用来求解给定区间RMQ的最值,本文以最小值为例 ST算法分为两部分 离线预处理(nlogn):运用DP思想,用于求解区间最值,并保存到一个二维数组中. 在线查询 (O(1)):对 ...

  2. 直接打开virtualbox报错

    错误现象: Failed to instantiate CLSID_VirtualBox w/ IVirtualBox, but CLSID_VirtualBox w/ IUnknown works. ...

  3. unity-Profiler调试Android的正确姿势(mumu模拟器)

    1. 前置条件 安卓的相关环境 java.ant.sdk.ndk 什么的都装好(其实这里只需要 sdk 里面的 adb),配好 adb 工具的环境变量(意思就是 cmd 里直接输 adb 命令即可) ...

  4. Nginx配置实际案例

    user root root;worker_processes 2; #error_log logs/error.log;#error_log logs/error.log notice;#error ...

  5. 机械臂——arduino、marlin固件、printrun软件【转】

    最近了解到,在市面上大多数机械臂控制都采用的arduino这个开源硬件来控制的,而我发现既然会单片机,就没有必要采用arduino来控制了,arduino只是一种为了简化编程而开发一种软硬件控制平台, ...

  6. zookeeper三节点集群安装记录

    以下是3个节点的zk安装记录. 下载 下载地址: http://mirrors.shu.edu.cn/apache/zookeeper/ cd /data/opt/zk wget http://mir ...

  7. iOS https请求 NSURLSessionDataTask

    // //  YKSHttpsRequest.m //  YKShareSdkDemo // //  Created by qingyun on 22/05/2017. //  Copyright © ...

  8. PHP知识梳理

      前端 HTML.CSS. JS(DOM操作.事件操作).Jquery(选择器.属性/值操作.事件操作).ajax PHP基础 变量(类型.类型转换) 常量(系统.自定义) 运算(算术.字符串.赋值 ...

  9. 一步步教你轻松学主成分分析PCA降维算法

    一步步教你轻松学主成分分析PCA降维算法 (白宁超 2018年10月22日10:14:18) 摘要:主成分分析(英语:Principal components analysis,PCA)是一种分析.简 ...

  10. 关于go语言的测试相关内容笔记

    其实之前对于测试自己一直比较弱,不管是python的还是go的,关于测试这块并没有非常注重,这次就好好整理一下关于go的测试 单元测试 Go程序主要包含三类测试: 功能测试(test).基准测试(be ...