A rooted tree is a well-known data structure in computer science and engineering. An example is shown below:

In the figure, each node is labeled with an integer from {1, 2,...,16}. Node 8 is the root of the tree. Node x is an ancestor of node y if node x is in the path between the root and node y. For example, node 4 is an ancestor of node 16. Node 10 is also an ancestor of node 16. As a matter of fact, nodes 8, 4, 10, and 16 are the ancestors of node 16. Remember that a node is an ancestor of itself. Nodes 8, 4, 6, and 7 are the ancestors of node 7. A node x is called a common ancestor of two different nodes y and z if node x is an ancestor of node y and an ancestor of node z. Thus, nodes 8 and 4 are the common ancestors of nodes 16 and 7. A node x is called the nearest common ancestor of nodes y and z if x is a common ancestor of y and z and nearest to y and z among their common ancestors. Hence, the nearest common ancestor of nodes 16 and 7 is node 4. Node 4 is nearer to nodes 16 and 7 than node 8 is.

For other examples, the nearest common ancestor of nodes 2 and 3 is node 10, the nearest common ancestor of nodes 6 and 13 is node 8, and the nearest common ancestor of nodes 4 and 12 is node 4. In the last example, if y is an ancestor of z, then the nearest common ancestor of y and z is y.

Write a program that finds the nearest common ancestor of two distinct nodes in a tree.

Input

The input consists of T test cases. The number of test cases (T) is given in the first line of the input file. Each test case starts with a line containing an integer N , the number of nodes in a tree, 2<=N<=10,000. The nodes are labeled with integers 1, 2,..., N. Each of the next N -1 lines contains a pair of integers that represent an edge --the first integer is the parent node of the second integer. Note that a tree with N nodes has exactly N - 1 edges. The last line of each test case contains two distinct integers whose nearest common ancestor is to be computed.

Output

Print exactly one line for each test case. The line should contain the integer that is the nearest common ancestor.

Sample Input

2

16

1 14

8 5

10 16

5 9

4 6

8 4

4 10

1 13

6 15

10 11

6 7

10 2

16 3

8 1

16 12

16 7

5

2 3

3 4

3 1

1 5

3 5

Sample Output

4

3

LCA模板套上去就好了

#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include <iomanip>
#include<cmath>
#include<float.h>
#include<string.h>
#include<algorithm>
#define sf scanf
#define scf(x) scanf("%d",&x)
#define pf printf
#define prf(x) printf("%d\n",x)
#define mm(x,b) memset((x),(b),sizeof(x))
#include<vector>
#include<queue>
#include<map>
#define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=a;i>=n;i--)
typedef long long ll;
const ll mod=1e9+100;
const double eps=1e-8;
using namespace std;
const double pi=acos(-1.0);
const int inf=0xfffffff;
const int N = 1010;
int rmq[2*N];//rmq数组,就是欧拉序列对应的深度序列
struct ST
{
int mm[2*N];
int dp[2*N][20];//最小值对应的下标
void init(int n)
{
mm[0] = -1;
for(int i = 1;i <= n;i++)
{
mm[i] = ((i&(i-1)) == 0)?mm[i-1]+1:mm[i-1];
dp[i][0] = i;
}
for(int j = 1; j <= mm[n];j++)
for(int i = 1; i + (1<<j) - 1 <= n; i++)
dp[i][j] = rmq[dp[i][j-1]] < rmq[dp[i+(1<<(j-1))][j-1]]?dp[i][j-1]:dp[i+(1<<(j-1))][j-1];
}
int query(int a,int b)//查询[a,b]之间最小值的下标
{
if(a > b) swap(a,b);
int k = mm[b-a+1];
return rmq[dp[a][k]] <= rmq[dp[b-(1<<k)+1][k]]?dp[a][k]:dp[b-(1<<k)+1][k];
}
};
//边的结构体定义
struct Edge
{
int to,next;
};
Edge edge[N*2];
int tot,head[N]; int F[N*2];//欧拉序列,就是dfs遍历的顺序,长度为2*n-1,下标从1开始
int P[N];//P[i]表示点i在F中第一次出现的位置
int cnt; ST st;
void init()
{
tot = 0;
memset(head,-1,sizeof(head));
}
void addedge(int u,int v)//加边,无向边需要加两次
{
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot++;
}
void dfs(int u,int pre,int dep)
{
F[++cnt] = u;
rmq[cnt] = dep;
P[u] = cnt;
for(int i = head[u];i != -1;i = edge[i].next)
{
int v = edge[i].to;
if(v == pre)continue;
dfs(v,u,dep+1);
F[++cnt] = u;
rmq[cnt] = dep;
}
}
void LCA_init(int root,int node_num)//查询LCA前的初始化
{
cnt = 0;
dfs(root,root,0);
st.init(2*node_num-1);
}
int query_lca(int u,int v)//查询u,v的lca编号
{
return F[st.query(P[u],P[v])];
}
bool root[N];
int main()
{
int n,m,num,v,u;
while(~scff(n,m))//n个点,m个查询点
{
init();
mm(sum,0);
mm(root,true);
rep(i,1,n)
{
sf("%d %d",&u,&v);
addedge(u,v);
addedge(v,u);
root[v]=false;
}
int temp;
rep(i,1,n+1)
{
if(root[i])
{
temp=i;break;
}
}
LCA_init(temp,n);
while(m--)
{
while(getchar()!='(') ;
scanf("%d%d",&u,&v);
while(getchar()!=')') ;
sum[query_lca(u,v)]++;
}
rep(i,1,n+1)
{
if(sum[i])
pf("%d:%d\n",i,sum[i]);
}
}
return 0;
}

D - Nearest Common Ancestors的更多相关文章

  1. POJ 1330 Nearest Common Ancestors(Targin求LCA)

    传送门 Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 26612   Ac ...

  2. [最近公共祖先] POJ 1330 Nearest Common Ancestors

    Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 27316   Accept ...

  3. POJ 1330 Nearest Common Ancestors

    Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 14698   Accept ...

  4. POJ1330 Nearest Common Ancestors

      Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 24587   Acce ...

  5. POJ 1330 Nearest Common Ancestors(Tree)

    题目:Nearest Common Ancestors 根据输入建立树,然后求2个结点的最近共同祖先. 注意几点: (1)记录每个结点的父亲,比较层级时要用: (2)记录层级: (3)记录每个结点的孩 ...

  6. 【POJ】1330 Nearest Common Ancestors ——最近公共祖先(LCA)

    Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 18136   Accept ...

  7. POJ 1330 Nearest Common Ancestors LCA题解

    Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 19728   Accept ...

  8. POJ - 1330 Nearest Common Ancestors(基础LCA)

    POJ - 1330 Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000KB   64bit IO Format: %l ...

  9. POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA)

    POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA) Description A ...

  10. pku 1330 Nearest Common Ancestors LCA离线

    pku 1330 Nearest Common Ancestors 题目链接: http://poj.org/problem?id=1330 题目大意: 给定一棵树的边关系,注意是有向边,因为这个WA ...

随机推荐

  1. Hibernate(7)关联关系_单向1对n

    1.单向一对多(@OneToMany)关联是比较少用的(一般用双向一对多代替). 2.实体类: 1端:Publishers.java public class Publishers { private ...

  2. 分布式架构探索 - 2. WebService RPC框架之Apache CXF

    Apache CXF是一个开源的WebService RPC框架. 例子: 1. 新建一个maven web项目, 添加pom 如下: <?xml version="1.0" ...

  3. grid - 隐式命名网格线名称

    1.隐式的指定网格线反向指定了隐式的网格区域名称,命名的网格区域隐式的命名了网格线名称. 指定网格区域会给网格区域边线添加隐式的网格线名称.这些网格线的命名是基于网格区域来命名,只是在网格区域名称的后 ...

  4. Mybatis中使用集合、数组

    一.简述 本文讲Mybatis中如何将传入参数为数组或者集合对象,进行遍历,组合Where条件中如in条件等内容. 有3种情况: 如果传入的是单参数且参数类型是一个List的时候,collection ...

  5. [Chrome插件] SelectJd(京东自营筛选器) v1.0.0 发布

    如今京东的商品列表已经没有"自营"筛选了,只有"京东物流"筛选.导致找商品时不方便. 于是我开发了一下Chrome插件--SelectJd(京东自营筛选器). ...

  6. Asp.net的HttpContext.Current.Items详解

    之前asp.net只是在使用Session来进行用户会话时的信息存储,甚至很少留意Session完整的类调用是HttpContext.Current.Sessoin.... 好吧,我还是处于只会固定写 ...

  7. R语言中的回归诊断-- car包

    如何判断我们的线性回归模型是正确的? 1.回归诊断的基本方法opar<-par(no.readOnly=TRUE) fit <- lm(weight ~ height, data = wo ...

  8. MySQL技术内幕读书笔记(八)——事务

    事务的实现 ​ 事务隔离性由锁来实现.原子性.一致性.持久性通过数据库的redo log和undo log来完成.redo log称为重做日志,用来保证事务的原子性和持久性.undo log用来保证事 ...

  9. mac 10.12 sierra 机械键盘+ratm可编程鼠标记录

      系统:mac 10.12 sierra 键盘:机械键盘 鼠标:mad catz ratm 在mac 10.11/10.12 之前: 机械键盘:一般的机械键盘在mac上使用, alt 和 win 键 ...

  10. 解决matplotlib库在PyCharm和命令行都无法正常显示问题

    我们在学习人工智能的时候,会经常用到matplotlib,在学习的时候有一些例子写了代码运行: import matplotlib.pyplot as plt import numpy as np x ...