最小生成树-克鲁斯卡尔算法(kruskal's algorithm)实现
算法描述
克鲁斯卡尔算法是一种贪心算法,因为它每一步都挑选当前最轻的边而并不知道全局路径的情况.
算法最关键的一个步骤是要判断要加入mst的顶点是否会形成回路,我们可以利用并查集的技术来做。
并查集的具体实现可参考:快速并查集
下面是对算法的一个简单描述:
这是一个非常简单易懂的算法,它面向边而不是顶点,所以在算法开始的时候,它要先找出所有的crossing edges,而为了高效的找到最轻边,用一个优先队列来维护这些crossing edges.
/**
* 找出所有crossing edges并加入优先队列
*/
private void findAllCrossingEdges(){
for(Vertex v:this.vertices) {
for(Edge edge:v.Adj) {
WeightedEdge we = (WeightedEdge)edge;
this.crossingEdges.add(we);
}
}
}
private PriorityQueue<WeightedEdge> crossingEdges = new PriorityQueue<WeightedEdge>();
算法实现
下面是克鲁斯卡尔算法的一个实现:
/**
* 克鲁斯卡尔算法求MST
*
* 克鲁斯尔卡算法也是一种贪心算法(greedy algorithm)
* 1.总是挑选最轻的边,如果这条边的两个端点没有形成回路,就将这条边加入MST
* 2.在剩下的边中,重复1.
*
*/
public void kruskalMST() {
resetMemo();
//找出所有crossing edges
findAllCrossingEdges();
//初始化并查集
FastUnionFind uf = new FastUnionFind(vertexCount());
//算法用贪心策略,每一步都挑选最轻的边来加入mst
//需要注意的是,在加入mst之前要考察边的两端顶点是否形成环路
while (!this.crossingEdges.isEmpty()) {
//最轻边
WeightedEdge edge = crossingEdges.poll();
//如果点src和点to没有形成环
if(!uf.isConnected(edge.src,edge.to)){
//将src和to连通
uf.union(edge.src,edge.to);
//将最轻边加入mst
mst.offer(edge);
//更新mst的权重
mstWeight += edge.weight;
}
}
}
时间复杂度
算法需要对所有边E 进行访问,这步操作耗时O(E )
将边入队和出队的操作耗时O(logE).
由于假设图是连通的,并查判断回路操作耗时O(logE)
所以整体耗时O(ElogE ).
由于 |E| < V*V,所以logE = 2logV,则可将算法复杂度写为O(ElogV).
最小生成树-克鲁斯卡尔算法(kruskal's algorithm)实现的更多相关文章
- 贪心算法(Greedy Algorithm)之最小生成树 克鲁斯卡尔算法(Kruskal's algorithm)
克鲁斯卡尔算法(Kruskal's algorithm)是两个经典的最小生成树算法的较为简单理解的一个.这里面充分体现了贪心算法的精髓.大致的流程能够用一个图来表示.这里的图的选择借用了Wikiped ...
- 贪心算法(Greedy Algorithm)最小生成树 克鲁斯卡尔算法(Kruskal's algorithm)
克鲁斯卡尔算法(Kruskal's algorithm)它既是古典最低的一个简单的了解生成树算法. 这充分反映了这一点贪心算法的精髓.该方法可以通常的图被表示.图选择这里借用Wikipedia在.非常 ...
- 图->连通性->最小生成树(克鲁斯卡尔算法)
文字描述 上一篇博客介绍了最小生成树(普里姆算法),知道了普里姆算法求最小生成树的时间复杂度为n^2, 就是说复杂度与顶点数无关,而与弧的数量没有关系: 而用克鲁斯卡尔(Kruskal)算法求最小生成 ...
- 最小生成树--克鲁斯卡尔算法(Kruskal)
按照惯例,接下来是本篇目录: $1 什么是最小生成树? $2 什么是克鲁斯卡尔算法? $3 克鲁斯卡尔算法的例题 摘要:本片讲的是最小生成树中的玄学算法--克鲁斯卡尔算法,然后就没有然后了. $1 什 ...
- 最小生成树练习1(克鲁斯卡尔算法Kruskal)
今天刷一下水题练手入门,明天继续. poj1861 Network(最小生成树)新手入门题. 题意:输出连接方案中最长的单根网线长度(必须使这个值是所有方案中最小的),然后输出方案. 题解:本题没有直 ...
- 克鲁斯卡尔算法(Kruskal算法)求最小生成树
题目传送:https://loj.ac/p/10065 1.排序函数sort,任何一种排序算法都行,下面的示例代码中,我采用的是冒泡排序算法 2.寻源函数getRoot,寻找某一个点在并查集中的根,注 ...
- 最小生成树之克鲁斯卡尔(Kruskal)算法
学习最小生成树算法之前我们先来了解下 下面这些概念: 树(Tree):如果一个无向连通图中不存在回路,则这种图称为树. 生成树 (Spanning Tree):无向连通图G的一个子图如果是一颗包含G的 ...
- 洛谷P3366【模板】最小生成树-克鲁斯卡尔Kruskal算法详解附赠习题
链接 题目描述 如题,给出一个无向图,求出最小生成树,如果该图不连通,则输出orz 输入输出格式 输入格式: 第一行包含两个整数N.M,表示该图共有N个结点和M条无向边.(N<=5000,M&l ...
- 最小生成树之Kruskal(克鲁斯卡尔)算法
学习最小生成树算法之前我们先来了解下下面这些概念: 树(Tree):如果一个无向连通图中不存在回路,则这种图称为树. 生成树 (Spanning Tree):无向连通图G的一个子图如果是一颗包含G的所 ...
随机推荐
- openjudge-NOI 2.5-1756 八皇后
题目链接:http://noi.openjudge.cn/ch0205/1756/ 题解: 上一道题稍作改动…… #include<cstdio> #include<algorith ...
- vue总结 08状态管理vuex
状态管理 类 Flux 状态管理的官方实现 由于状态零散地分布在许多组件和组件之间的交互中,大型应用复杂度也经常逐渐增长.为了解决这个问题,Vue 提供 vuex:我们有受到 Elm 启发的状态管 ...
- 使用DOS访问数据库详解
今天突发奇想,想是否可以用DOS命令来操作本地数据库或者连接其他外地数据库,网上搜了很多教程比较繁琐,自己想写一篇文章详细叙述一下,也为以后复习做点备份. 工具: 电脑 win7 64bit MySQ ...
- 缓存数据库-redis数据类型和操作(set)
一:Redis 集合(Set) Redis的Set是string类型的无序集合.集合成员是唯一的,这就意味着集合中不能出现重复的数据. Redis 中 集合是通过哈希表实现的,所以添加,删除,查找的复 ...
- Code Conventions for the JavaScript Programming Language
This is a set of coding conventions and rules for use in JavaScript programming. It is inspired by t ...
- HDU 4632 Palindrome subsequence(区间DP求回文子序列数)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4632 题目大意:给你若干个字符串,回答每个字符串有多少个回文子序列(可以不连续的子串).解题思路: 设 ...
- Centos之目录处理命令
linux中 关于目录 有几个重要概念 一个是 / 根目录 还有一个当前用户的家目录 比如 root用户的家目录是 /root 普通用户的家目录是/home/xxx 下 root登录 默认家目录 ...
- 网络编程--Socket与ServerSocket
1.服务器端代码 package net; import java.io.PrintStream; import java.net.ServerSocket; import java.net.Sock ...
- SqlServr性能优化性能之层次结构(十五)
1.添加根节点: hierarchyid GetRoot()方法 --创建数据库 create table Employeeh(EmployeeID int,Name varchar(500),Ma ...
- C#连接mariadb代码及方式
不负责任的说MariaDb和MySQL很多都是通用的,因为来自同一个爹... 和MySQL连接方式差不多 首先配置好你的MariaDb,创建test数据库,在test里创建MyTable表,脚本如下( ...