最小生成树-克鲁斯卡尔算法(kruskal's algorithm)实现
算法描述
克鲁斯卡尔算法是一种贪心算法,因为它每一步都挑选当前最轻的边而并不知道全局路径的情况.
算法最关键的一个步骤是要判断要加入mst的顶点是否会形成回路,我们可以利用并查集的技术来做。
并查集的具体实现可参考:快速并查集
下面是对算法的一个简单描述:
这是一个非常简单易懂的算法,它面向边而不是顶点,所以在算法开始的时候,它要先找出所有的crossing edges,而为了高效的找到最轻边,用一个优先队列来维护这些crossing edges.
/**
* 找出所有crossing edges并加入优先队列
*/
private void findAllCrossingEdges(){
for(Vertex v:this.vertices) {
for(Edge edge:v.Adj) {
WeightedEdge we = (WeightedEdge)edge;
this.crossingEdges.add(we);
}
}
}
private PriorityQueue<WeightedEdge> crossingEdges = new PriorityQueue<WeightedEdge>();
算法实现
下面是克鲁斯卡尔算法的一个实现:
/**
* 克鲁斯卡尔算法求MST
*
* 克鲁斯尔卡算法也是一种贪心算法(greedy algorithm)
* 1.总是挑选最轻的边,如果这条边的两个端点没有形成回路,就将这条边加入MST
* 2.在剩下的边中,重复1.
*
*/
public void kruskalMST() {
resetMemo();
//找出所有crossing edges
findAllCrossingEdges();
//初始化并查集
FastUnionFind uf = new FastUnionFind(vertexCount());
//算法用贪心策略,每一步都挑选最轻的边来加入mst
//需要注意的是,在加入mst之前要考察边的两端顶点是否形成环路
while (!this.crossingEdges.isEmpty()) {
//最轻边
WeightedEdge edge = crossingEdges.poll();
//如果点src和点to没有形成环
if(!uf.isConnected(edge.src,edge.to)){
//将src和to连通
uf.union(edge.src,edge.to);
//将最轻边加入mst
mst.offer(edge);
//更新mst的权重
mstWeight += edge.weight;
}
}
}
时间复杂度
算法需要对所有边E 进行访问,这步操作耗时O(E )
将边入队和出队的操作耗时O(logE).
由于假设图是连通的,并查判断回路操作耗时O(logE)
所以整体耗时O(ElogE ).
由于 |E| < V*V,所以logE = 2logV,则可将算法复杂度写为O(ElogV).
最小生成树-克鲁斯卡尔算法(kruskal's algorithm)实现的更多相关文章
- 贪心算法(Greedy Algorithm)之最小生成树 克鲁斯卡尔算法(Kruskal's algorithm)
克鲁斯卡尔算法(Kruskal's algorithm)是两个经典的最小生成树算法的较为简单理解的一个.这里面充分体现了贪心算法的精髓.大致的流程能够用一个图来表示.这里的图的选择借用了Wikiped ...
- 贪心算法(Greedy Algorithm)最小生成树 克鲁斯卡尔算法(Kruskal's algorithm)
克鲁斯卡尔算法(Kruskal's algorithm)它既是古典最低的一个简单的了解生成树算法. 这充分反映了这一点贪心算法的精髓.该方法可以通常的图被表示.图选择这里借用Wikipedia在.非常 ...
- 图->连通性->最小生成树(克鲁斯卡尔算法)
文字描述 上一篇博客介绍了最小生成树(普里姆算法),知道了普里姆算法求最小生成树的时间复杂度为n^2, 就是说复杂度与顶点数无关,而与弧的数量没有关系: 而用克鲁斯卡尔(Kruskal)算法求最小生成 ...
- 最小生成树--克鲁斯卡尔算法(Kruskal)
按照惯例,接下来是本篇目录: $1 什么是最小生成树? $2 什么是克鲁斯卡尔算法? $3 克鲁斯卡尔算法的例题 摘要:本片讲的是最小生成树中的玄学算法--克鲁斯卡尔算法,然后就没有然后了. $1 什 ...
- 最小生成树练习1(克鲁斯卡尔算法Kruskal)
今天刷一下水题练手入门,明天继续. poj1861 Network(最小生成树)新手入门题. 题意:输出连接方案中最长的单根网线长度(必须使这个值是所有方案中最小的),然后输出方案. 题解:本题没有直 ...
- 克鲁斯卡尔算法(Kruskal算法)求最小生成树
题目传送:https://loj.ac/p/10065 1.排序函数sort,任何一种排序算法都行,下面的示例代码中,我采用的是冒泡排序算法 2.寻源函数getRoot,寻找某一个点在并查集中的根,注 ...
- 最小生成树之克鲁斯卡尔(Kruskal)算法
学习最小生成树算法之前我们先来了解下 下面这些概念: 树(Tree):如果一个无向连通图中不存在回路,则这种图称为树. 生成树 (Spanning Tree):无向连通图G的一个子图如果是一颗包含G的 ...
- 洛谷P3366【模板】最小生成树-克鲁斯卡尔Kruskal算法详解附赠习题
链接 题目描述 如题,给出一个无向图,求出最小生成树,如果该图不连通,则输出orz 输入输出格式 输入格式: 第一行包含两个整数N.M,表示该图共有N个结点和M条无向边.(N<=5000,M&l ...
- 最小生成树之Kruskal(克鲁斯卡尔)算法
学习最小生成树算法之前我们先来了解下下面这些概念: 树(Tree):如果一个无向连通图中不存在回路,则这种图称为树. 生成树 (Spanning Tree):无向连通图G的一个子图如果是一颗包含G的所 ...
随机推荐
- Python subprocess- call、check_call、check_output
简介 subprocess模块用来创建新的进程,连接到其stdin.stdout.stderr管道并获取它们的返回码.subprocess模块的出现是为了替代如下旧模块及函数:os.system.os ...
- pip install 升级时候 出现报asciii码错误的问题。
原因是pip安装python包会加载我的用户目录,我的用户目录恰好是中文的,ascii不能编码.解决办法是: python目录 Python27\Lib\site-packages 建一个文件site ...
- css-css背景
CSS 允许应用纯色作为背景,也允许使用背景图像创建相当复杂的效果 一:背景色background-color 属性 p {background-color: gray;} 二:背景图像 backgr ...
- python网络编程-socket“粘包”(小数据发送问题)
一:什么是粘包 “粘包”, 即服务器端你调用时send 2次,但你send调用时,数据其实并没有立刻被发送给客户端,而是放到了系统的socket发送缓冲区里,等缓冲区满了.或者数据等待超时了,数据才会 ...
- jupyter(ipython notebook) 安装和入门教程
近期大家无论是自己做数据分析还是紧急答辩做PPT,可能都需要画一些数据的展示图:以前大家都是用excel画图,但excel画图存在一定的局限性,比如你要画个累积直方图,excel就很麻烦了,所以给大家 ...
- Java @SuppressWarnings
@SuppressWarnings() 注解以@开头可以接受参数 @SuppressWarnings("unchecked") 不受检查的警告信息应该被抑制 //: holding ...
- MySQL学习笔记:date_add
date_add函数 作用:date_add()函数向日期添加指定的时间间隔 语法: date_add(date,INTERVAL expr type) date:日期表达式 type:时间间隔,da ...
- 不用的代码,存一份--用tornado实现的websocket
因为现在使用Channels来实现啦, 这样就在Django的体系里自已弄完了. 方便后期代码维护和服务器部署. 这份土陋的东东,就放起来吧. 毕竟,通过读取文件来返回实时websocket,不适应于 ...
- 2017 Tag Cloud
距离上一篇随笔已经过去了三年多,惊讶地发现我还有个博客在这里 :) 越来越懒,这三年多就用下面这个tag cloud来总结好了
- 【LOJ】 #2545. 「JXOI2018」守卫
题解 只会蠢蠢的\(n^3\)--菜啊-- 我们发现最右的端点一定会选,看到的点一定是当前能看到的斜率最小的点变得更小一点,记录下这个点,在我们遇到一个看不到的点的时候,然后只用考虑R到它斜率最小的这 ...