最小生成树-克鲁斯卡尔算法(kruskal's algorithm)实现
算法描述
克鲁斯卡尔算法是一种贪心算法,因为它每一步都挑选当前最轻的边而并不知道全局路径的情况.
算法最关键的一个步骤是要判断要加入mst的顶点是否会形成回路,我们可以利用并查集的技术来做。
并查集的具体实现可参考:快速并查集
下面是对算法的一个简单描述:
这是一个非常简单易懂的算法,它面向边而不是顶点,所以在算法开始的时候,它要先找出所有的crossing edges,而为了高效的找到最轻边,用一个优先队列来维护这些crossing edges.
/**
* 找出所有crossing edges并加入优先队列
*/
private void findAllCrossingEdges(){
for(Vertex v:this.vertices) {
for(Edge edge:v.Adj) {
WeightedEdge we = (WeightedEdge)edge;
this.crossingEdges.add(we);
}
}
}
private PriorityQueue<WeightedEdge> crossingEdges = new PriorityQueue<WeightedEdge>();
算法实现
下面是克鲁斯卡尔算法的一个实现:
/**
* 克鲁斯卡尔算法求MST
*
* 克鲁斯尔卡算法也是一种贪心算法(greedy algorithm)
* 1.总是挑选最轻的边,如果这条边的两个端点没有形成回路,就将这条边加入MST
* 2.在剩下的边中,重复1.
*
*/
public void kruskalMST() {
resetMemo();
//找出所有crossing edges
findAllCrossingEdges();
//初始化并查集
FastUnionFind uf = new FastUnionFind(vertexCount());
//算法用贪心策略,每一步都挑选最轻的边来加入mst
//需要注意的是,在加入mst之前要考察边的两端顶点是否形成环路
while (!this.crossingEdges.isEmpty()) {
//最轻边
WeightedEdge edge = crossingEdges.poll();
//如果点src和点to没有形成环
if(!uf.isConnected(edge.src,edge.to)){
//将src和to连通
uf.union(edge.src,edge.to);
//将最轻边加入mst
mst.offer(edge);
//更新mst的权重
mstWeight += edge.weight;
}
}
}
时间复杂度
算法需要对所有边E 进行访问,这步操作耗时O(E )
将边入队和出队的操作耗时O(logE).
由于假设图是连通的,并查判断回路操作耗时O(logE)
所以整体耗时O(ElogE ).
由于 |E| < V*V,所以logE = 2logV,则可将算法复杂度写为O(ElogV).
最小生成树-克鲁斯卡尔算法(kruskal's algorithm)实现的更多相关文章
- 贪心算法(Greedy Algorithm)之最小生成树 克鲁斯卡尔算法(Kruskal's algorithm)
克鲁斯卡尔算法(Kruskal's algorithm)是两个经典的最小生成树算法的较为简单理解的一个.这里面充分体现了贪心算法的精髓.大致的流程能够用一个图来表示.这里的图的选择借用了Wikiped ...
- 贪心算法(Greedy Algorithm)最小生成树 克鲁斯卡尔算法(Kruskal's algorithm)
克鲁斯卡尔算法(Kruskal's algorithm)它既是古典最低的一个简单的了解生成树算法. 这充分反映了这一点贪心算法的精髓.该方法可以通常的图被表示.图选择这里借用Wikipedia在.非常 ...
- 图->连通性->最小生成树(克鲁斯卡尔算法)
文字描述 上一篇博客介绍了最小生成树(普里姆算法),知道了普里姆算法求最小生成树的时间复杂度为n^2, 就是说复杂度与顶点数无关,而与弧的数量没有关系: 而用克鲁斯卡尔(Kruskal)算法求最小生成 ...
- 最小生成树--克鲁斯卡尔算法(Kruskal)
按照惯例,接下来是本篇目录: $1 什么是最小生成树? $2 什么是克鲁斯卡尔算法? $3 克鲁斯卡尔算法的例题 摘要:本片讲的是最小生成树中的玄学算法--克鲁斯卡尔算法,然后就没有然后了. $1 什 ...
- 最小生成树练习1(克鲁斯卡尔算法Kruskal)
今天刷一下水题练手入门,明天继续. poj1861 Network(最小生成树)新手入门题. 题意:输出连接方案中最长的单根网线长度(必须使这个值是所有方案中最小的),然后输出方案. 题解:本题没有直 ...
- 克鲁斯卡尔算法(Kruskal算法)求最小生成树
题目传送:https://loj.ac/p/10065 1.排序函数sort,任何一种排序算法都行,下面的示例代码中,我采用的是冒泡排序算法 2.寻源函数getRoot,寻找某一个点在并查集中的根,注 ...
- 最小生成树之克鲁斯卡尔(Kruskal)算法
学习最小生成树算法之前我们先来了解下 下面这些概念: 树(Tree):如果一个无向连通图中不存在回路,则这种图称为树. 生成树 (Spanning Tree):无向连通图G的一个子图如果是一颗包含G的 ...
- 洛谷P3366【模板】最小生成树-克鲁斯卡尔Kruskal算法详解附赠习题
链接 题目描述 如题,给出一个无向图,求出最小生成树,如果该图不连通,则输出orz 输入输出格式 输入格式: 第一行包含两个整数N.M,表示该图共有N个结点和M条无向边.(N<=5000,M&l ...
- 最小生成树之Kruskal(克鲁斯卡尔)算法
学习最小生成树算法之前我们先来了解下下面这些概念: 树(Tree):如果一个无向连通图中不存在回路,则这种图称为树. 生成树 (Spanning Tree):无向连通图G的一个子图如果是一颗包含G的所 ...
随机推荐
- java基础47 装饰着模式设计
1.装饰者模式 增强一个类的功能,而且还可以让这些装饰类相互装饰 2.装饰者设计模式的步骤 1.在装饰类的内部维护一个被装饰类的引用 2.让装饰者有一个共同的父类或者父接口 3.实例 packa ...
- Git missing in VS Code – No source control providers
解决办法:管理->设置->搜索[git.enabled]和[git.path],分别设置下即可. 注意"git.enabled: true",只设置git.path是不 ...
- Zookeeper介绍及安装部署
本节内容: Zookeeper介绍 Zookeeper特点 Zookeeper应用场景 用到了Zookeeper的一些系统 Zookeeper集群安装部署 一.Zookeeper介绍 是一个针对大型分 ...
- JS倒计时、计时
倒计时 倒计时常用于发送验证码 前端代码如下: <!DOCTYPE html> <html> <head> <title>倒计时.计时</titl ...
- tp5总结(四)
数据库 1.数据库配置 1-1.配置文件配置[http://ww:7070/tp5-3/public/] 1-2.Db::connect配置[数组和字符串方式][http://ww:7070/tp5- ...
- mysql 存储过程详解
MySQL 存储过程是从 MySQL 5.0 开始增加的新功能.存储过程的优点有一箩筐.不过最主要的还是执行效率和SQL 代码封装.特别是 SQL 代码封装功能,如果没有存储过程,在外部程序访问数据库 ...
- java8的几种常用用法
1. 如果接口的返回值有可能是null,请用Optional封装 public Optional<User> getUser() { return Optional.ofNullable( ...
- Java_正则表达式&时间日期
正则表达式 1.概念 正则表达式(英语:Regular Expression,在代码中常简写为regex). 正则表达式是一个字符串,使用单个字符串来描述.用来定义匹配规则,匹配一系列符合某个句法规则 ...
- maven的统一版本管理实践
为什么要使用maven的统一版本管理? 在进行项目开发的时候,我们使用maven来做项目的构建和管理.为了方便项目中各个模块之间的复用,项目通常会有多个模块构成.不同的模块,会各自应用自己需要的jar ...
- WebApi入门
饮水思源 http://www.cnblogs.com/guyun/p/4589115.html http://www.cnblogs.com/chutianshu1981/p/3288796.htm ...