BFS(广搜)DFS(深搜)算法解析
图是一种灵活的数据结构,一般作为一种模型用来定义对象之间的关系或联系。对象由顶点(V)表示,而对象之间的关系或者关联则通过图的边(E)来表示。 图可以分为有向图和无向图,一般用G=(V,E)来表示图。经常用邻接矩阵或者邻接表来描述一副图。 在图的基本算法中,最初需要接触的就是图的遍历算法,根据访问节点的顺序,可分为广度优先搜索(BFS)和深度优先搜索(DFS)。
广度优先搜索(BFS) 广度优先搜索在进一步遍历图中顶点之前,先访问当前顶点的所有邻接结点。 a .首先选择一个顶点作为起始结点,并将其染成灰色,其余结点为白色。 b. 将起始结点放入队列中。 c. 从队列首部选出一个顶点,并找出所有与之邻接的结点,将找到的邻接结点放入队列尾部,将已访问过结点涂成黑色,没访问过的结点是白色。如果顶点的颜色是灰色,表示已经发现并且放入了队列,如果顶点的颜色是白色,表示还没有发现 d. 按照同样的方法处理队列中的下一个结点。 基本就是出队的顶点变成黑色,在队列里的是灰色,还没入队的是白色。 用一副图来表达这个流程如下:
从顶点1开始进行广度优先搜索:
- 初始状态,从顶点1开始,队列={1}
- 访问1的邻接顶点,1出队变黑,2,3入队,队列={2,3,}
- 访问2的邻接结点,2出队,4入队,队列={3,4}
- 访问3的邻接结点,3出队,队列={4}
- 访问4的邻接结点,4出队,队列={ 空} 结点5对于1来说不可达。 上面的图可以通过如下邻接矩阵表示:
int maze[][] = {
{ , , , , },
{ , , , , },
{ , , , , },
{ , , , , },
{ , , , , }
};
BFS核心代码如下:
#include <iostream>
#include <queue>
#define N 5
using namespace std;
int maze[N][N] = {
{ , , , , },
{ , , , , },
{ , , , , },
{ , , , , },
{ , , , , }
};
int visited[N + ] = { , };
void BFS(int start)
{
queue<int> Q;
Q.push(start);
visited[start] = ;
while (!Q.empty())
{
int front = Q.front();
cout << front << " ";
Q.pop();
for (int i = ; i <= N; i++)
{
if (!visited[i] && maze[front - ][i - ] == )
{
visited[i] = ;
Q.push(i);
}
}
}
}
int main()
{
for (int i = ; i <= N; i++)
{
if (visited[i] == )
continue;
BFS(i);
}
return ;
}
深度优先搜索(DFS) 深度优先搜索在搜索过程中访问某个顶点后,需要递归地访问此顶点的所有未访问过的相邻顶点。 初始条件下所有节点为白色,选择一个作为起始顶点,按照如下步骤遍历: a. 选择起始顶点涂成灰色,表示还未访问 b. 从该顶点的邻接顶点中选择一个,继续这个过程(即再寻找邻接结点的邻接结点),一直深入下去,直到一个顶点没有邻接结点了,涂黑它,表示访问过了 c. 回溯到这个涂黑顶点的上一层顶点,再找这个上一层顶点的其余邻接结点,继续如上操作,如果所有邻接结点往下都访问过了,就把自己涂黑,再回溯到更上一层。 d. 上一层继续做如上操作,知道所有顶点都访问过。 用图可以更清楚的表达这个过程:
从顶点1开始做深度搜索:
- 初始状态,从顶点1开始
- 依次访问过顶点1,2,3后,终止于顶点3
- 从顶点3回溯到顶点2,继续访问顶点5,并且终止于顶点5
- 从顶点5回溯到顶点2,并且终止于顶点2
- 从顶点2回溯到顶点1,并终止于顶点1
从顶点4开始访问,并终止于顶点4
上面的图可以通过如下邻接矩阵表示:
int maze[][] = {
{ , , , , },
{ , , , , },
{ , , , , },
{ , , , , },
{ , , , , }
};
DFS核心代码如下(递归实现):
#include <iostream>
#define N 5
using namespace std;
int maze[N][N] = {
{ , , , , },
{ , , , , },
{ , , , , },
{ , , , , },
{ , , , , }
};
int visited[N + ] = { , };
void DFS(int start)
{
visited[start] = ;
for (int i = ; i <= N; i++)
{
if (!visited[i] && maze[start - ][i - ] == )
DFS(i);
}
cout << start << " ";
}
int main()
{
for (int i = ; i <= N; i++)
{
if (visited[i] == )
continue;
DFS(i);
}
return ;
}
非递归实现如下,借助一个栈:
#include <iostream>
#include <stack>
#define N 5
using namespace std;
int maze[N][N] = {
{ , , , , },
{ , , , , },
{ , , , , },
{ , , , , },
{ , , , , }
};
int visited[N + ] = { , };
void DFS(int start)
{
stack<int> s;
s.push(start);
visited[start] = ;
bool is_push = false;
while (!s.empty())
{
is_push = false;
int v = s.top();
for (int i = ; i <= N; i++)
{
if (maze[v - ][i - ] == && !visited[i])
{
visited[i] = ;
s.push(i);
is_push = true;
break;
}
}
if (!is_push)
{
cout << v << " ";
s.pop();
} }
}
int main()
{
for (int i = ; i <= N; i++)
{
if (visited[i] == )
continue;
DFS(i);
}
return ;
}
有的DFS是先访问读取到的结点,等回溯时就不再输出该结点,也是可以的。算法和我上面的区别就是输出点的时机不同,思想还是一样的。DFS在环监测和拓扑排序中都有不错的应用。
BFS(广搜)DFS(深搜)算法解析的更多相关文章
- DFS 深搜专题 入门典例 -- 凌宸1642
DFS 深搜专题 入门典例 -- 凌宸1642 深度优先搜索 是一种 枚举所有完整路径以遍历所有情况的搜索方法 ,使用 递归 可以很好的实现 深度优先搜索. 1 最大价值 题目描述 有 n 件物品 ...
- CodeM美团点评编程大赛初赛B轮 黑白树【DFS深搜+暴力】
[编程题] 黑白树 时间限制:1秒 空间限制:32768K 一棵n个点的有根树,1号点为根,相邻的两个节点之间的距离为1.树上每个节点i对应一个值k[i].每个点都有一个颜色,初始的时候所有点都是白色 ...
- Secret Milking Machine POJ - 2455 网络流(Dinic算法---广搜判断+深搜增广)+时间优化+二分
题意: 第一行输入N M C ,表示从1到N有M条无向边,现在要从1走到N 走C次完全不同的路径,求最长边的最小值.下面M行是从a点到b点的距离. 建图: 题上说从两点之间可以有多条边,问的是从1~N ...
- 【DFS深搜初步】HDOJ-2952 Counting Sheep、NYOJ-27 水池数目
[题目链接:HDOJ-2952] Counting Sheep Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 ...
- DFS深搜——Red and Black——A Knight's Journey
深搜,从一点向各处搜找到全部能走的地方. Problem Description There is a rectangular room, covered with square tiles. Eac ...
- Red and Black(DFS深搜实现)
Description There is a rectangular room, covered with square tiles. Each tile is colored either red ...
- poj 2386:Lake Counting(简单DFS深搜)
Lake Counting Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 18201 Accepted: 9192 De ...
- 广搜,深搜,单源最短路径,POJ(1130),ZOJ(1085)
题目链接: http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=85 http://poj.org/problem?id=1130 这 ...
- UVA 165 Stamps (DFS深搜回溯)
Stamps The government of Nova Mareterrania requires that various legal documents have stamps attac ...
随机推荐
- thinkphp每次跳转时都会显示笑脸的修改
Success和error方法都有对应的模板,并且是可以设置的,默认的设置是两个方法对应的模板都是://默认错误跳转对应的模板文件'TMPL_ACTION_ERROR' => THINK_PAT ...
- 人工智能我见及特征提取mfcc算法理解
一.人工智能 从LeNex手写数字识别,AlexNet图像识别,到无人驾驶汽车,再到Alpha Go.Alpha Go Zero的横空出世,人工智能无疑已经成为了当下科技的大热.那么什么是人工智能呢? ...
- @NamedEntityGraphs --JPA按实体类对象参数中的字段排序问题得解决方法
JPA按实体类对象参数中的字段排序问题得解决方法@Entity @Table(name="complaints") @NamedEntityGraphs({ @NamedEntit ...
- WebApi-JSON序列化循环引用
Overview 最近被序列化,循环引用的问题,让我浑身酸爽.遇到这种异常是在搭建WebApi的时候,当我返回Linq实例类集合的时候出现的. 下定决心要解决这个问题.循环引用引起的原因是: 比如说: ...
- Android 使用ViewPager 做的半吊子的图片轮播
Android 使用ViewPager 做的半吊子的图片轮播 效果图 虽然不咋样,但是最起码的功能是实现了,下面我们来一步步的实现它. 界面 下面我们来分析一下界面的构成 整体的布局: 因为我们要做出 ...
- Java重写、重载与覆盖
Java继承.重载与重写 一.继承(单继承) 1.利用extends关键字一个方法继承另一个方法,而且只能直接继承一个类. 2.当Sub类和Base类在同一个包时,Sub类继承Base类中的publi ...
- (Nginx) URL REWRITE
URL重写的基础介绍 把URI地址用作参数传递:URL REWRITE 最简单的是基于各种WEB服务器中的URL重写转向(Rewrite)模块的URL转换: 这样几乎可以不修改程序的实现将 news. ...
- 认识javascript中的作用域和上下文
javascript中的作用域(scope)和上下文(context)是这门语言的独到之处,这部分归功于他们带来的灵活性.每个函数有不同的变量上下文和作用域.这些概念是javascript中一些强大的 ...
- Problem H: 深入浅出学算法009-韩信点兵
Description 秦朝末年,楚汉相争.有一次,韩信将1500名将士与楚王大将李锋交战.苦战一场,楚军不敌,败退回营,汉军也死伤四五百人,于是,韩信整顿兵马也返回大本营.当行至一山坡,忽有后军来报 ...
- RTSP交互过程
步骤一: 发送:OPTIONS rtsp://127.0.0.1/172.30.31.225:8000:HIK-DS8000HC:0:1:admin:hs123456:av_stream RTSP/1 ...