作者:桂。

时间:2017-05-04  18:31:09

链接:http://www.cnblogs.com/xingshansi/p/6806637.html


前言

语音识别等应用离不开音频特征的提取,最近在看音频特征提取的内容,用到一个python下的工具包——pyAudioAnalysis: An Open-Source Python Library for Audio Signal Analysis,该工具包的说明文档可以点击这里下载,对应的github链接点击这里

这个工具包原说明文档支持的是Linux安装,且不能与python3很好地兼容,注意啦

一、常用工具包简介

目前针对音频信号,C/C++ 、Python、MATLAB等常用的工具包有:

二、pyAudioAnalysis工具包简介

pyAudioAnalysis是一个音频处理工具包,主要功能如图:

其中Feature Extraction包括(顺序有先后):

补充说明一下:

  • 1-Zero Crossing Rate:短时平均过零率,即每帧信号内,信号过零点的次数,体现的是频率特性
  • 2-Energy:短时能量,即每帧信号的平方和,体现的是信号能量的强弱
  • 3-Entropy of Energy:能量熵,跟频谱的谱熵(Spectral Entropy)有点类似,不过它描述的是信号的时域分布情况,体现的是连续性
  • 4-Spectral Centroid:频谱中心又称为频谱一阶距,频谱中心的值越小,表明越多的频谱能量集中在低频范围内,如:voice与music相比,通常spectral centroid较低
  • 5-Spectral Spread:频谱延展度,又称为频谱二阶中心矩,它描述了信号在频谱中心周围的分布状况
  • 6-Spectral Entropy:谱熵,根据熵的特性可以知道,分布越均匀,熵越大,能量熵反应了每一帧信号的均匀程度,如说话人频谱由于共振峰存在显得不均匀,而白噪声的频谱就更加均匀,借此进行VAD便是应用之一
  • 7-Spectral Flux:频谱通量,描述的是相邻帧频谱的变化情况
    function [vsf] = FeatureSpectralFlux (X, f_s)
    
        % difference spectrum (set first diff to zero)
    afDeltaX = diff([X(:,1), X],1,2); % flux
    vsf = sqrt(sum(afDeltaX.^2))/size(X,1);
    end
  • 8-Spectral Rolloff:频谱滚降点,给出定义:

  • 9~21-MFCCs:就是大名鼎鼎的梅尔倒谱系数,这个网上资料非常多,也是非常重要的音频特征。
  • 22~33-Chroma Vector:这个有12个参数,对应就是12级音阶,还是看原文解释:A 12-element representation of the spectral energy where the bins represent the 12 equal-tempered pitch classes of western-type music (semitone spacing).
  • 34-Chroma Deviation:这个就是Chroma Vector的标准方差。

这个在音乐声里可能用的比较多,目前没有接触这类特征:

什么是Chroma特征呢?给出一个示意图

code示例:

from pyAudioAnalysis import audioBasicIO
from pyAudioAnalysis import audioFeatureExtraction
import matplotlib.pyplot as plt
[Fs, x] = audioBasicIO.readAudioFile("sample.wav");
F = audioFeatureExtraction.stFeatureExtraction(x, Fs, 0.050*Fs, 0.025*Fs);
plt.subplot(2,1,1); plt.plot(F[0,:]); plt.xlabel('Frame no'); plt.ylabel('ZCR');
plt.subplot(2,1,2); plt.plot(F[1,:]); plt.xlabel('Frame no'); plt.ylabel('Energy'); plt.show()

如果希望了解更多的音频特征,这里给出一个链接,点击这里,包含的特征有:

对应都有graph、sound可以点击,sound是对应的音频,graph对应的是特征的效果图,比如打开zeroCross:

三、pyAudioAnalysis工具包安装 

pyAudioAnalysis对应链接点击这里。安装这个工具包需要依赖:

  A-hmmlearn安装

hmmlearn的链接点击这里。安装hmmlearn有几个前提:

下载之后,我把hmmlearn-master放在python-3.5.2-0\Lib\目录,cmd窗口下cd进去,输入:

pip install -U --user hmmlearn

  即可安装成功:

   B-Simplejson工具包安装:

Simplejson是Python的JSON编码和解码器,它具有简单、快速、完整、正确和易于扩展的特点,对应的链接点击这里。Simplejson工具包直接conda安装即可:

  C-eyed3安装:

eyed3:A tool for working with audio files, specifically MP3 files containing ID3 metadata. 它提供了读写 ID3 标签(v1.x 和 v2.3/v2.4)的功能。同时可检测 MP3 文件的头信息,包括比特率、采样频率和播放时间等。eyed3直接conda install没有成功,对应的链接点击这里。选择了这个版本:

放在了python库的Lib文件夹下:C:\Users\Nobleding\Anaconda3\pkgs\python-3.5.2-0\Lib,cd到对应目录下,pip install 文件名.whl,即可完成安装

  D-pydub安装:

pydub是音频处理常用的工具包,例如:

打开一个wav格式文件:

from pydub import AudioSegment
song = AudioSegment.from_wav("never_gonna_give_you_up.wav")

  打开一个mp3格式文件:

song = AudioSegment.from_mp3("never_gonna_give_you_up.mp3")

  或者其他音频、视频格式:

ogg_version = AudioSegment.from_ogg("never_gonna_give_you_up.ogg")
flv_version = AudioSegment.from_flv("never_gonna_give_you_up.flv") mp4_version = AudioSegment.from_file("never_gonna_give_you_up.mp4", "mp4")
wma_version = AudioSegment.from_file("never_gonna_give_you_up.wma", "wma")
aac_version = AudioSegment.from_file("never_gonna_give_you_up.aiff", "aac")

  更多细节信息可以访问其主页。我在github上下载对应的工具包,里边有对应的安装说明。

如果处理wav文件,没有其他要求,如果音频是其他格式它要求电脑安装 ffmpeg orlibav.如果没有安装,运行会有提示:

ffmpeg下载,选择版本

解压并添加环境变量,并利用ffplay测试一下打开一个mp4文件:

ffmpeg安装成功。这个时候import pydub,不再有warning信息

  E-pyAudioAnalysis安装

Github给出的是linux下的安装思路,这里下载之后将pyAudioAnalysis放在了\Anaconda3\Lib\site-packages文件夹下,输入指令:

成功调用,原数据是支持Python2的,很多细节要修改,给出一个简单读取wav的测试:

from pyAudioAnalysis import audioBasicIO
import numpy as np
import matplotlib.pyplot as plt
[Fs, x] = audioBasicIO.readAudioFile("count2.wav");
time = np.arange(0,len(x))*1.0/Fs
plt.plot(time,x)

  效果图:

音频特征提取——pyAudioAnalysis工具包的更多相关文章

  1. python特征提取——pyAudioAnalysis工具包

    作者:桂. 时间:2017-05-04  18:31:09 链接:http://www.cnblogs.com/xingshansi/p/6806637.html 前言 语音识别等应用离不开音频特征的 ...

  2. 音频特征提取——librosa工具包使用

    作者:桂. 时间:2017-05-06  11:20:47 链接:http://www.cnblogs.com/xingshansi/p/6816308.html 前言 本文主要记录librosa工具 ...

  3. librosa音频特征提取,python librosa库在centos上依赖llvm的问题?

    win10下安装使用: https://blog.csdn.net/qq_39516859/article/details/80679718 https://blog.csdn.net/qq_3951 ...

  4. pyAudioAnalysis-audioFeatureExtraction 错误纠正

    1. TypeError: mfccInitFilterBanks() takes 2 positional arguments but 7 were given The issue In the f ...

  5. 顶级Python库

    绝不能错过的24个顶级Python库 Python有以下三个特点: · 易用性和灵活性 · 全行业高接受度:Python无疑是业界最流行的数据科学语言 · 用于数据科学的Python库的数量优势 事实 ...

  6. 一文总结数据科学家常用的Python库(下)

    用于建模的Python库 我们已经到达了本文最受期待的部分 - 构建模型!这就是我们大多数人首先进入数据科学领域的原因,不是吗? 让我们通过这三个Python库探索模型构建. Scikit-learn ...

  7. 总结数据科学家常用的Python库

    概述 这篇文章中,我们挑选了24个用于数据科学的Python库. 这些库有着不同的数据科学功能,例如数据收集,数据清理,数据探索,建模等,接下来我们会分类介绍. 您觉得我们还应该包含哪些Python库 ...

  8. 学习笔记TF046:TensoFlow开发环境,Mac、Ubuntu/Linux、Windows,CPU版本、GPU版本

    下载TensorFlow https://github.com/tensorflow/tensorflow/tree/v1.1.0 .Tags选择版本,下载解压. pip安装.pip,Python包管 ...

  9. html的视频插件 (转)

         1)jMedia Element是一个基于jQuery/jQuery UI实现的HTML5音频/视频开发工具包.提供非常多的功能来控制页面中的音频和视频内容.当旧的浏览器不兼容HTML5时, ...

随机推荐

  1. CentOS 服务器安全设置

      我们必须明白:最小的权限+最少的服务=最大的安全.所以无论是配置任何服务器,我们都必须把不用的服务关闭.把系统权限设置到最小化,这样才能保证服务器最大的安全. 一.注释掉系统不需要的用户和用户组 ...

  2. _com_util::ConvertBSTRToString的使用问题

    #include <comutil.h> 然后调用_com_util::ConvertBSTRToString提示如下错误: error LNK2019: unresolved exter ...

  3. CATransition 动画处理视图切换

    一:引入包和头文件:   需要在frameworks中添加QuartzCore.framework 在接口程序中加上头文件   #import <QuartzCore/QuartzCore.h& ...

  4. java面试第十五天

    网络编程: 多线程+网络: 1.服务器端的等待客户连接代码( while(true) ),服务器端与单个客户端交互的代码放入线程体( run ) 2.客户端如有其他要求,与服务器交互的代码也要放入线程 ...

  5. hadoop的namenode无法启动的解决的方法

    安装hadoop集群时,启动集群,发现master节点的namenode没有启动成功.这一般都是没有格式格式化namenode的缘故.格式化一下就可以,格式化namenode的命令:在hadoop安装 ...

  6. 解决RMI 客户端异常no security manager: RMI class loader disabled

    解决方法: 客户端和服务端的Service包名改一致 ok!!

  7. OpenERP的短信(SMS)接口

    今天测试了一下OpenERP的短信(SMS)接口. 在OpenERP的Partner界面上,WebClient的右边的工具条有个“send sms”的按钮.OpenERP中发短信用的是短信的Web接口 ...

  8. Storm简述及集群安装

    Storm 集群类似于一个 Hadoop 集群.然而你在 Hadoop 的执行"MapReduce job", 在storm 上你执行 "topologies (不好翻译 ...

  9. 【#254_DIV2】-A B C

    题目链接:http://codeforces.com/contest/445 解题报告: 俄国人今天不知道为什么九点钟就比赛了.仅仅过了两道题,第三题全然没思路,有时间单独去刷第三题吧,看起来非常难 ...

  10. 一个简单的knockout.js 和easyui的绑定

    <!DOCTYPE html><html><head><meta charset="UTF-8"><title>Basi ...