[BZOJ2669] [cqoi2012]局部极小值

Description

有一个n行m列的整数矩阵,其中1到nm之间的每个整数恰好出现一次。如果一个格子比所有相邻格子(相邻是指有公共边或公共顶点)都小,我们说这个格子是局部极小值。给出所有局部极小值的位置,你的任务是判断有多少个可能的矩阵。

Input

输入第一行包含两个整数n和m(1<=n<=4, 1<=m<=7),即行数和列数。以下n行每行m个字符,其中“X”表示局部极小值,“.”表示非局部极小值。

Output

输出仅一行,为可能的矩阵总数除以12345678的余数。

Sample Input

3 2

X.

..

.X

Sample Output

60

试题分析

数据范围那么小,由于两个局部极小值在八连通中挨着的时候,是没有合法情况的,所以局部极小值不会超过8个。

这里要满足局部极小值集合严格为\(S\)的方案,这个严格看起来非常恶心,阻碍了我们的dp。

那么就尝试利用容斥把这个严格去掉,枚举集合\(F\)使得\(S\in F\)。

这个枚举\(F\)的集合是\(2^8\)的。 我们按照从小到大填入局部极小值,一个状态不合法当且仅当一个不是局部极小值的位置填了而它八连通中的局部极小值没有填。

所以\(f_{i,j}\)为填到第\(i\)个数字,其中集合\(j\)的局部极小值已经填完。

由状态可以得到转移方程:

$ f_{i,j}=\sum_{j\in k} f_{i-1,j-{ k} }+f_{i-1,j}\times (g_j-(i-1)) \(
其中\)g_j$表示去掉j的补集(还没有填的局部极小值)后还剩多少个格子。

然后容斥即可。

#include<iostream>
#include<cstring>
#include<cstdio>
#include<vector>
#include<algorithm> using namespace std;
#define LL long long inline LL read(){
LL x=0,f=1; char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=-1;
for(;isdigit(c);c=getchar()) x=x*10+c-'0';
return x*f;
}
const LL INF = 2147483600;
const LL MAXN = 100010;
const LL Mod = 12345678; LL dis[10][2]={{0,1},{1,0},{0,-1},{-1,0},{-1,-1},{1,1},{-1,1},{1,-1},{0,0}};
LL N,M; char str[11]; LL x[MAXN+1],y[MAXN+1];
LL vis[11][11],nod[11][11]; LL ans; inline void setting(LL x,LL y,LL g){
for(LL k=0;k<9;k++){
LL xx=x+dis[k][0],yy=y+dis[k][1];
if(xx<1||yy<1||xx>N||yy>M) continue;
vis[xx][yy]+=g;
} return ;
}
LL ret=0;
inline void setting2(LL x,LL y,LL g){
for(LL k=0;k<9;k++){
LL xx=x+dis[k][0],yy=y+dis[k][1];
if(xx<1||yy<1||xx>N||yy>M) continue;
if(g==1) {if(!nod[xx][yy]) nod[xx][yy]=1,--ret;}
else nod[xx][yy]=0;
} return ;
}
LL g[(1<<9)]; LL cnt;
inline void Pre(){
for(LL i=0;i<(1<<cnt);i++){
ret=N*M;
for(LL j=1;j<=cnt;j++)
if((i>>(j-1))&1) setting2(x[j],y[j],1);
g[(1<<cnt)-1-i]=ret;
for(LL j=1;j<=cnt;j++)
if((i>>(j-1))&1) setting2(x[j],y[j],-1);
} return ;
}
LL f[7*7][(1<<9)];
inline void dp(LL x){
f[0][0]=1;
for(LL i=1;i<=N*M;i++){
for(LL j=0;j<(1<<cnt);j++){
f[i][j]=0; //cout<<i<<endl;
if(g[j]<=(i-1)) continue; //cout<<"t:"<<g[j]<<" "<<j<<" "<<i-1<<endl;
if(j) for(LL k=1;k<=cnt;k++)
if((j>>(k-1))&1) f[i][j]+=f[i-1][j^(1<<(k-1))],f[i][j]%=Mod;
f[i][j]+=f[i-1][j]*((g[j]-(i-1))%Mod+Mod)%Mod; f[i][j]%=Mod;
}
} ans+=x*f[N*M][(1<<cnt)-1]%Mod; //cout<<f[N*M][(1<<cnt)-1]<<endl;
ans=(ans%Mod+Mod)%Mod; return ;
}
bool tt[17][17];
inline void dfs(LL stp,LL flag,LL line,LL row){
if(!stp){
Pre(); dp(flag); return ;
}
for(LL i=line;i<=N;i++){
for(LL j=(i==line?row:1);j<=M;j++){
if(!vis[i][j]){
setting(i,j,1); x[++cnt]=i,y[cnt]=j;
dfs(stp-1,flag,i+(j+1>M?1:0),(j+1>M?1:j+1));
setting(i,j,-1); --cnt;
}
}
} return ;
} int main(){
//freopen(".in","r",stdin);
//freopen(".out","w",stdout);
N=read(),M=read();
for(LL i=1;i<=N;i++){
scanf("%s",str+1);
for(LL j=1;j<=M;j++){
if(str[j]=='X') {
x[++cnt]=i,y[cnt]=j;
setting(i,j,1);
}
}
}
for(LL stp=0;stp<=8-cnt;stp++){
dfs(stp,(stp&1)?-1:1,1,1);
} printf("%lld\n",ans%Mod);
return 0;
}

[BZOJ2669] [cqoi2012]局部极小值的更多相关文章

  1. bzoj2669[cqoi2012]局部极小值 容斥+状压dp

    2669: [cqoi2012]局部极小值 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 774  Solved: 411[Submit][Status ...

  2. BZOJ2669 [cqoi2012]局部极小值 状压DP 容斥原理

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ2669 题意概括 有一个n行m列的整数矩阵,其中1到nm之间的每个整数恰好出现一次.如果一个格子比所 ...

  3. [BZOJ2669][CQOI2012]局部极小值:DP+容斥原理

    分析 题目要求有且只有一些位置是局部极小值.有的限制很好处理,但是只有嘛,嗯...... 考虑子集反演(话说这个其实已经算是超集反演了吧还叫子集反演是不是有点不太合适),枚举题目给出位置集合的所有超集 ...

  4. bzoj2669 [cqoi2012]局部极小值 状压DP+容斥

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=2669 题解 可以发现一个 \(4\times 7\) 的矩阵中,有局部最小值的点最多有 \(2 ...

  5. 【BZOJ-2669】局部极小值 状压DP + 容斥原理

    2669: [cqoi2012]局部极小值 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 561  Solved: 293[Submit][Status ...

  6. bzoj 2669 [cqoi2012]局部极小值 DP+容斥

    2669: [cqoi2012]局部极小值 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 838  Solved: 444[Submit][Status ...

  7. 【BZOJ 2669】 2669: [cqoi2012]局部极小值 (状压DP+容斥原理)

    2669: [cqoi2012]局部极小值 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 667  Solved: 350 Description 有一 ...

  8. P3160 [CQOI2012]局部极小值

    题目 P3160 [CQOI2012]局部极小值 一眼就是状压,接下来就不知道了\(qwq\) 做法 我们能手玩出局部小值最多差不多是\(8,9\)个的样子,\(dp_{i,j}\)为填满\(1~i\ ...

  9. P3160 [CQOI2012]局部极小值 题解(状压DP+容斥)

    题目链接 P3160 [CQOI2012]局部极小值 双倍经验,双倍快乐 解题思路 存下来每个坑(极小值点)的位置,以这个序号进行状态压缩. 显然,\(4*7\)的数据范围让极小值点在8个以内(以下示 ...

随机推荐

  1. 【疑点】<p></p>标签为什么不能包含块级标签?还有哪些特殊的HTML标签?

    最近,在码代码的时候,就是下面的这段代码,我犯了一个很不起眼,但犯了就致命的BUG. <body> <p> <ol> <li>Hello</li& ...

  2. 多校 HDU 6397 Character Encoding (容斥)

    题意:在0~n-1个数里选m个数和为k,数字可以重复选: 如果是在m个xi>0的情况下就相当于是将k个球分割成m块,那么很明显就是隔板法插空,不能为0的条件限制下一共k-1个位置可以选择插入隔板 ...

  3. Tickets HDU1260

    题目来源:http://acm.hdu.edu.cn/showproblem.php?pid=1260 (http://www.fjutacm.com/Problem.jsp?pid=1382) 题意 ...

  4. Django Xadmin - 重构django admin

    一.Django admin的执行流程 https://www.cnblogs.com/weihengblog/p/9122509.html 我的博客,介绍了django admin执行流程 二.Xa ...

  5. Flask:静态文件&模板(0.1)

    Windows 10家庭中文版,Python 3.6.4,Flask 1.0.2 前面看了Flask的Quickstart文档,可是,一直没有练习里面的内容,这不,刚刚练习完毕,来写篇博文记录一下! ...

  6. Flask: Quickstart解读

    Windows 10家庭中文版,Python 3.6.4,Flask 1.0.2 从示例代码说起: from flask import Flask app = Flask(__name__) @app ...

  7. Nginx - 日志格式及输出

    1. 前言 在 Nginx 服务器中,如果想对日志输出进行控制还是很容易的.Nginx 服务器提供了一个 HttpLogModule 模块,可以通过它来设置日志的输出格式. 2. HttpLogMod ...

  8. thinkphp5高亮当前页(仅针对个人项目记录,不做通用参考)

    <div class="navbg"> <ul class="menu"> <li> <a href="/& ...

  9. java 闭包与回调

    闭包(closure)是一个可调用的对象,它记录了一些信息,这些信息来自于创建它的作用域. 内部类是面向对象的闭包,因为它不仅包含外围类对象(创建内部类的作用域)的信息,还自动拥有一个指向此外围类对象 ...

  10. 最简单删除SQL Server中所有数据的方法(不用考虑表之间的约束条件,即主表与子表的关系)

    其实删除数据库中数据的方法并不复杂,为什么我还要多此一举呢,一是我这里介绍的是删除数据库的所有数据,因为数据之间可能形成相互约束关系,删除操作可能陷入死循环,二是这里使用了微软未正式公开的sp_MSF ...