题目链接

BZOJ3688

题解

将点排序

设\(f[i][j][0|1]\)表示以第\(i\)点结尾,有\(j\)段,最后一段上升或者下降的方案数

以上升为例

\[f[i][j][0] = \sum\limits_{k = 1}^{i - 1}\sum\limits_{y_k < y_i}f[k][j][0] + \sum\limits_{k = 1}^{i - 1}\sum\limits_{y_k < y_i}f[k][j - 1][1]
\]

\(bit\)优化成\(O(knlogn)\)

#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<vector>
#include<queue>
#include<cmath>
#include<map>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define cls(s,v) memset(s,v,sizeof(s))
#define mp(a,b) make_pair<int,int>(a,b)
#define cp pair<int,int>
#define lbt(x) (x & -x)
using namespace std;
const int maxn = 100005,maxm = 100005,INF = 0x3f3f3f3f,P = 100007;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = 0; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 1) + (out << 3) + c - 48; c = getchar();}
return flag ? out : -out;
}
int f[maxn][12][2],N = 100000;
int S[2][2][maxn],n,x[maxn],y[maxn],id[maxn],K;
void add(int* s,int u,int v){while (u <= N) s[u] = (s[u] + v) % P,u += lbt(u);}
int query(int* s,int u){int re = 0; while (u) re = (re + s[u]) % P,u -= lbt(u); return re;}
int sum(int* s,int l,int r){return query(s,r) - query(s,l - 1);}
inline bool cmp(const int& a,const int& b){return x[a] < x[b];}
int main(){
n = read(); K = read();
REP(i,n) x[i] = read(),y[i] = read(),id[i] = i;
sort(id + 1,id + 1 + n,cmp);
REP(i,n) f[i][0][0] = f[i][0][1] = 1;
for (int k = 1; k <= K; k++){
cls(S,0);
for (int i = 1; i <= n; i++){
int u = id[i];
f[u][k][0] = (sum(S[1][0],1,y[u]) + sum(S[0][1],1,y[u])) % P;
f[u][k][1] = (sum(S[1][1],y[u],N) + sum(S[0][0],y[u],N)) % P;
add(S[0][0],y[u],f[u][k - 1][0]);
add(S[1][0],y[u],f[u][k][0]);
add(S[0][1],y[u],f[u][k - 1][1]);
add(S[1][1],y[u],f[u][k][1]);
}
}
int ans = 0;
for (int i = 1; i <= n; i++) ans = (ans + f[i][K][0] + f[i][K][1]) % P;
printf("%d\n",(ans + P) % P);
return 0;
}

BZOJ3688 折线统计 【dp + BIT】的更多相关文章

  1. BZOJ3688: 折线统计

    题解: 令f[i][j][0/1]表示前i个数有j段,最后一段是下降/上升的方案数 很容易列出状态转移方程(已按x轴排序) f[i][j][0]=sigma(f[k][j][0]+f[k][j-1][ ...

  2. BZOJ3688 折线统计【树状数组优化DP】

    Description 二维平面上有n个点(xi, yi),现在这些点中取若干点构成一个集合S,对它们按照x坐标排序,顺次连接,将会构成一些连续上升.下降的折线,设其数量为f(S).如下图中,1-&g ...

  3. 2018.09.28 bzoj3688: 折线统计(dp+树状数组)

    传送门 简单树状数组优化dp. 注意到k很小提示我们搜(d)(d)(d)索(p)(p)(p). 先按第一维排序. 用f[i][j][0/1]f[i][j][0/1]f[i][j][0/1]表示第i个点 ...

  4. 【ybt金牌导航1-2-3】折线统计

    折线统计 题目链接:ybt金牌导航1-2-3 题目大意 在一个图上有一些点,保证任意两个点的横纵坐标都不相同. 要你选一些集合,按 x 坐标排序依次连接,会构成一些连续上升下降的折线,问你折线数量是 ...

  5. 折线统计(line)

    折线统计(line) 题目描述 二维平面上有n个点(xi, yi),现在这些点中取若干点构成一个集合S,对它们按照x坐标排序,顺次连接,将会构成一些连续上升.下降的折线,设其数量为f(S).如下图中, ...

  6. 动态规划——区间DP,计数类DP,数位统计DP

    本博客部分内容参考:<算法竞赛进阶指南> 一.区间DP 划重点: 以前所学过的线性DP一般从初始状态开始,沿着阶段的扩张向某个方向递推,直至计算出目标状态. 区间DP也属于线性DP的一种, ...

  7. [BZOJ 3992] [SDOI 2015] 序列统计(DP+原根+NTT)

    [BZOJ 3992] [SDOI 2015] 序列统计(DP+原根+NTT) 题面 小C有一个集合S,里面的元素都是小于质数M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数 ...

  8. 题解 bzoj3688【折线统计】

    考虑 \(dp\) . 首先把所有节点按 \(x\) 从小到大排序是很有必要的. 记 f[i][j][0] 表示满足以第 \(i\) 个节点做折线结尾,选取的点集 \(S\) 满足 \(f(S)=j\ ...

  9. [FJSC2014]折线统计

    [题目描述] 二维平面上有n 个点(xi, yi),现在这些点中取若干点构成一个集合S,对它们按照x 坐标排序,顺次连接,将会构成一些连续上升.下降的折线,设其数量为f(S).如下图中,1->2 ...

随机推荐

  1. JavaScript判断对象是否是NULL(转)

    写js经常会遇到非空判断,看了你不就像风一样的文章 自己没有做总结,特地转载.很有帮助 function isEmpty(obj) { // 检验 undefined 和 null if (!obj ...

  2. 0.前言 three.js 简介

    前言 前段时间开始接触three.js本来以为会很简单但是真正开始学习的时候才发现事情并不是我想象的那么容易,three.js的学习资料非常的少稍微好一点的资料就是收费的,给three.js的学习带来 ...

  3. PHPCMS 栏目添加字段和修改描述textarea变成fceditor编辑器

    一.添加字段方法: 1. 添加数据库字段:description1,添加位置:v9_catetory表 找到phpcms/moudles/admin/templates/category_add.tp ...

  4. Java 快排 排序

    一.快排的一种 ==================== public class myMain { public static void main(String[] args) { int t[] ...

  5. Leetcode_6. Zigzag convertion

    6. Zigzag convertion 对输入的字符串做锯齿形变换,并输出新的字符串,所谓zigzag变化如下图所示. 将"ABCDEFGHIJKL"做4行的锯齿变换,新的字符串 ...

  6. wifi,Android渗透之arp欺骗

    查看自己wifi ip段 查看有哪些用户连接了此wifi,下图标记处为我的测试机(华为) 攻击开始,如果开启了arp防火墙,就会有提示 开启图片捕获

  7. JAVA分代收集机制详解

    Java堆中是JVM管理的最大一块内存空间.主要存放对象实例. 在JAVA中堆被分为两块区域:新生代(young).老年代(old). 堆大小=新生代+老年代:(新生代占堆空间的1/3.老年代占堆空间 ...

  8. Thunder——爱阅app(测评人:方铭)

    B.Thunder——爱阅app(测评人:方铭) 一.基于NABCD评论作品,及改进建议 每个小组评论其他小组Alpha发布的作品: 1.根据(不限于)NABCD评论作品的选题: 2.评论作品对选题的 ...

  9. 第二阶段Sprint冲刺会议6

    进展:将“录制”及“保存”整合到一起,修复出现的Bug,使之能够正常运行.

  10. Gogoing 场景调研(补)

    一.典型用户 蜗居在学校的大学生 二.场景描述 编号 用户故事 故事价值 (点数) 1 作为一名大学生,只知道学习 2 经常打游戏而无所事事的大学生 1.背景 (1)典型用户:张晨建 (2)用户的需求 ...