Tree
Time Limit: 5000MS   Memory Limit: 131072K
Total Submissions: 7384   Accepted: 2001

Description

You are given a tree with N nodes. The tree’s nodes are numbered 1 through N and its edges are numbered 1 through N − 1. Each edge is associated with a weight. Then you are to execute a series of instructions on the tree. The instructions can be one of the following forms:

CHANGE i v Change the weight of the ith edge to v
NEGATE a b Negate the weight of every edge on the path from a to b
QUERY a b Find the maximum weight of edges on the path from a to b

Input

The input contains multiple test cases. The first line of input contains an integer t (t ≤ 20), the number of test cases. Then follow the test cases.

Each test case is preceded by an empty line. The first nonempty line of its contains N (N ≤ 10,000). The next N − 1 lines each contains three integers ab and c, describing an edge connecting nodes a and b with weight c. The edges are numbered in the order they appear in the input. Below them are the instructions, each sticking to the specification above. A lines with the word “DONE” ends the test case.

Output

For each “QUERY” instruction, output the result on a separate line.

Sample Input

1

3
1 2 1
2 3 2
QUERY 1 2
CHANGE 1 3
QUERY 1 2
DONE

Sample Output

1
3
/*
poj3237 树链部分
感觉是比较不错的题目,主要是线段树掌握不怎么好导致一直有问题。
查询最大值 + 修改边 + 区间置反
先处理出树链,然后再上值
push_up 和 push_down函数
hhh-2016-2-2 3:46:58
*/ #include <functional>
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <Map>
using namespace std;
typedef long long ll;
typedef long double ld; using namespace std; const int maxn = 100010; struct node
{
int to,next;
} edge[maxn*2]; int head[maxn];
int top[maxn]; //链的顶端节点
int far[maxn]; //父亲
int dep[maxn]; //深度
int num[maxn]; //表示以x为根的子树的节点数
int p[maxn]; //p[u]表示边u所在的位置
int fp[maxn]; //与p相对应
int son[maxn]; //重儿子
int tot,pos;
void addedge(int u,int v)
{
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot ++;
} void dfs(int u,int fa,int d) //先处理出重儿子、dep、far、num
{
dep[u] = d;
far[u] = fa;
num[u] = 1;
for(int i = head[u]; i != -1; i = edge[i].next)
{
int v = edge[i].to;
if(v != fa)
{
dfs(v,u,d+1);
num[u] += num[v];
if(son[u] == -1 || num[v] > num[son[u]])
son[u] = v;
}
}
} void getpos(int u,int sp)
{
top[u] = sp;
p[u] = pos++;
fp[p[u]] = u;
if(son[u] == -1) return ;
getpos(son[u],sp);
for(int i = head[u]; i != -1; i = edge[i].next)
{
int v = edge[i].to;
if(v != far[u] && v != son[u])
getpos(v,v);
}
} struct Node
{
int l,r;
int flag;
int Max,Min;
} segtree[maxn*3]; void build(int i,int l,int r)
{
segtree[i].l = l;
segtree[i].r = r;
segtree[i].Max = 0;
segtree[i].Min = 0;
segtree[i].flag = 0;
if(l == r)
return ;
int mid = (l+r)/2;
build(i<<1,l,mid);
build((i<<1)|1,mid+1,r);
} void push_up(int i)
{
segtree[i].Max = max(segtree[i<<1].Max,segtree[(i<<1)|1].Max);
segtree[i].Min = min(segtree[i<<1].Min,segtree[(i<<1)|1].Min);
} void push_down(int i)
{
if(segtree[i].l == segtree[i].r)
return ;
if(segtree[i].flag)
{
segtree[i<<1].Max = -segtree[i<<1].Max;
segtree[i<<1].Min = -segtree[i<<1].Min;
swap(segtree[i<<1].Max,segtree[i<<1].Min);
segtree[i<<1].flag ^= 1; segtree[(i<<1)|1].Max = -segtree[(i<<1)|1].Max;
segtree[(i<<1)|1].Min = -segtree[(i<<1)|1].Min;
segtree[(i<<1)|1].flag ^= 1;
swap(segtree[(i<<1)|1].Max,segtree[(i<<1)|1].Min); segtree[i].flag = 0;
}
} void update(int i,int k,int val)
{
if(segtree[i].l == k && segtree[i].r == k)
{
segtree[i].Max = val;
segtree[i].Min = val;
segtree[i].flag = 0;
return ;
}
push_down(i);
int mid = (segtree[i].l+segtree[i].r)>>1;
if(k <= mid) update(i<<1,k,val);
else update((i<<1)|1,k,val);
push_up(i);
} void negat(int i,int l,int r)
{
if((segtree[i].l == l && segtree[i].r == r))
{
segtree[i].Max = -segtree[i].Max;
segtree[i].Min = -segtree[i].Min;
swap(segtree[i].Max,segtree[i].Min);
segtree[i].flag ^= 1;
return;
}
push_down(i);
int mid = (segtree[i].l+segtree[i].r)>>1;
if(r <= mid) negat(i<<1,l,r);
else if(l > mid) negat((i<<1)|1,l,r);
else
{
negat(i<<1,l,mid);
negat((i<<1)|1,mid+1,r);
}
push_up(i);
} int query(int i,int l,int r)
{
if(segtree[i].l == l && segtree[i].r == r)
{
return segtree[i].Max;
}
push_down(i);
int mid = (segtree[i].l+segtree[i].r)>>1;
if(r <= mid) return query(i<<1,l,r);
else if(l > mid) return query((i<<1)|1,l,r);
else return max(query(i<<1,l,mid),query((i<<1)|1,mid+1,r));
push_up(i);
} int fin(int l,int r)
{
int f1 = top[l];
int f2 = top[r];
int tt = -100000000;
while(f1 != f2)
{
if(dep[f1] < dep[f2])
{
swap(f1,f2);
swap(l,r);
}
tt = max(query(1,p[f1],p[l]),tt);
l = far[f1];
f1 = top[l];
}
if(l == r)
return tt;
if(dep[l] > dep[r]) swap(l,r);
return max(tt,query(1,p[son[l]],p[r]));
} void change(int l,int r)
{
int f1 = top[l];
int f2 = top[r];
while(f1 != f2)
{
if(dep[f1] < dep[f2])
{
swap(f1,f2);
swap(l,r);
}
negat(1,p[f1],p[l]);
l = far[f1];
f1 = top[l];
}
if(l == r) return ;
if(dep[l] > dep[r]) swap(l,r);
negat(1,p[son[l]],p[r]);
} void ini()
{
tot = 0;
pos = 1;
memset(head,-1,sizeof(head));
memset(son,-1,sizeof(son));
} int me[maxn][2];
int va[maxn]; int main()
{
int T;
int n;
//freopen("in.txt","r",stdin);
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
ini();
for(int i = 1; i < n; i++)
{
scanf("%d%d%d",&me[i][0],&me[i][1],&va[i]);
addedge(me[i][0],me[i][1]);
addedge(me[i][1],me[i][0]);
} dfs(1,0,0);
getpos(1,1);
build(1,1,n);
for(int i = 1; i < n; i++)
{
if(dep[me[i][0]] > dep[me[i][1]])
swap(me[i][0],me[i][1]);
update(1,p[me[i][1]],va[i]);
}
char ch[10];
while(scanf("%s",ch) == 1)
{
;
if(ch[0] == 'D') break;
int u,v;
scanf("%d%d",&u,&v);
if(ch[0] == 'Q')
printf("%d\n",fin(u,v));
else if(ch[0] == 'N')
change(u,v);
else
update(1,p[me[u][1]],v);
}
}
return 0;
}

  

poj3237 树链部分 边权模板的更多相关文章

  1. 树链剖分边权模板spoj375

    树链剖分是树分解成多条链来解决树上两点之间的路径上的问题 如何求出树链:第一次dfs求出树上每个结点的大小和深度和最大的儿子,第二次dfs就能将最大的儿子串起来并hash(映射)到线段树上(或者其他数 ...

  2. poj3237树链剖分边权+区间取负

    树链剖分+线段树lazy-tag在树链上操作时千万不要写错.. /* 树链剖分+线段树区间变负 */ #include<iostream> #include<cstring> ...

  3. hdu3966 树链剖分点权模板+线段树区间更新/树状数组区间更新单点查询

    点权树的模板题,另外发现树状数组也是可以区间更新的.. 注意在对链进行操作时方向不要搞错 线段树版本 #include<bits/stdc++.h> using namespace std ...

  4. POJ3237 Tree 树链剖分 边权

    POJ3237 Tree 树链剖分 边权 传送门:http://poj.org/problem?id=3237 题意: n个点的,n-1条边 修改单边边权 将a->b的边权取反 查询a-> ...

  5. 计蒜客 38229.Distance on the tree-1.树链剖分(边权)+可持久化线段树(区间小于等于k的数的个数)+离散化+离线处理 or 2.树上第k大(主席树)+二分+离散化+在线查询 (The Preliminary Contest for ICPC China Nanchang National Invitational 南昌邀请赛网络赛)

    Distance on the tree DSM(Data Structure Master) once learned about tree when he was preparing for NO ...

  6. BZOJ 1036 [ZJOI2008]树的统计Count (树链剖分 - 点权剖分 - 单点权修改)

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1036 树链剖分模版题,打的时候注意点就行.做这题的时候,真的傻了,单词拼错检查了一个多小时 ...

  7. POJ2763 Housewife Wind 树链剖分 边权

    POJ2763 Housewife Wind 树链剖分 边权 传送门:http://poj.org/problem?id=2763 题意: n个点的,n-1条边,有边权 修改单边边权 询问 输出 当前 ...

  8. HDU3669 Aragorn's Story 树链剖分 点权

    HDU3669 Aragorn's Story 树链剖分 点权 传送门:http://acm.hdu.edu.cn/showproblem.php?pid=3966 题意: n个点的,m条边,每个点都 ...

  9. 洛谷 P3384 【模板】树链剖分-树链剖分(点权)(路径节点更新、路径求和、子树节点更新、子树求和)模板-备注结合一下以前写的题目,懒得写很详细的注释

    P3384 [模板]树链剖分 题目描述 如题,已知一棵包含N个结点的树(连通且无环),每个节点上包含一个数值,需要支持以下操作: 操作1: 格式: 1 x y z 表示将树从x到y结点最短路径上所有节 ...

随机推荐

  1. lamp环境搭建经验总结

    环境:centos6.4,13个源码包:参考教程高罗峰细说php思路:1.首先确定gcc,g++的安装,因为这是c语言的编译工具,没有它,源码不可能安装,redhat的yum需要配置,分为本地源和网络 ...

  2. Docker学习笔记 - Docker容器内部署redis

    Docker学习笔记(2-4)Docker应用实验-redist server 和client的安装使用 一.获取redis容器(含客户端和服务端) 二.创建服务端容器 1.在终端A中运行redis- ...

  3. EasyUI easyui-combobox实现数据联动

    实现效果:当用户选择了调查地区以后,只显示当前选择地区的频道,如果没有选择地区,那么频道下拉列表是空的.实现效果,如下

  4. jedis配置

    public interface IJedisClientFactory { Jedis getJedis(); } JedisClientFactoryImpl.java @Service publ ...

  5. [转]linux如何修改文件或目录的权限(chmod)

    linux如何修改文件或目录的权限(chmod) chmod命令是linux上用于改变权限的命令,-R 是递归遍历子目录,因为你要操作的文件使用的*通配符.777,第一个7代表文件所属者的权限,第二个 ...

  6. javascript的变量声明、数据类型

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  7. CentOS 6.8下二级域名及目录的绑定

    二级域名对应目录的绑定: 第一步: 开启mod_rewrite模块,默认是开启的,这里可以查下是否开启 终端输入:vim /etc/httpd/conf/httpd.conf  回车 查看188行:L ...

  8. C# Execl表格文件转xml文件

    在我们的工作中可能会需要到让execl表格转换成xml文件来使用,这样程序读取数据来也比较方便 下面就写一个小程序来实现execl表格转换成xml文件来使用 会使用到的知识点如下 1:引用第三方Exe ...

  9. Django REST framework+Vue 打造生鲜超市(十)

    十一.pycharm远程代码调试 第三方登录和支付,都需要有服务器才行(回调url),我们可以用pycharm去远程调试服务器代码 服务器环境搭建 以全新阿里云centos7系统为例: 11.1.阿里 ...

  10. Gold well平台罗琪:叙利亚战火令黄金看涨意愿强烈

    Gold well平台罗琪:叙利亚战火令黄金看涨意愿强烈基本面分析:纸黄金交易通网显示,全球最大黄金上市交易基金(ETF)截至04月14日黄金持仓量较上日持平,当前持仓量为865.89吨,本月止净增持 ...