Tree
Time Limit: 5000MS   Memory Limit: 131072K
Total Submissions: 7384   Accepted: 2001

Description

You are given a tree with N nodes. The tree’s nodes are numbered 1 through N and its edges are numbered 1 through N − 1. Each edge is associated with a weight. Then you are to execute a series of instructions on the tree. The instructions can be one of the following forms:

CHANGE i v Change the weight of the ith edge to v
NEGATE a b Negate the weight of every edge on the path from a to b
QUERY a b Find the maximum weight of edges on the path from a to b

Input

The input contains multiple test cases. The first line of input contains an integer t (t ≤ 20), the number of test cases. Then follow the test cases.

Each test case is preceded by an empty line. The first nonempty line of its contains N (N ≤ 10,000). The next N − 1 lines each contains three integers ab and c, describing an edge connecting nodes a and b with weight c. The edges are numbered in the order they appear in the input. Below them are the instructions, each sticking to the specification above. A lines with the word “DONE” ends the test case.

Output

For each “QUERY” instruction, output the result on a separate line.

Sample Input

1

3
1 2 1
2 3 2
QUERY 1 2
CHANGE 1 3
QUERY 1 2
DONE

Sample Output

1
3
/*
poj3237 树链部分
感觉是比较不错的题目,主要是线段树掌握不怎么好导致一直有问题。
查询最大值 + 修改边 + 区间置反
先处理出树链,然后再上值
push_up 和 push_down函数
hhh-2016-2-2 3:46:58
*/ #include <functional>
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <Map>
using namespace std;
typedef long long ll;
typedef long double ld; using namespace std; const int maxn = 100010; struct node
{
int to,next;
} edge[maxn*2]; int head[maxn];
int top[maxn]; //链的顶端节点
int far[maxn]; //父亲
int dep[maxn]; //深度
int num[maxn]; //表示以x为根的子树的节点数
int p[maxn]; //p[u]表示边u所在的位置
int fp[maxn]; //与p相对应
int son[maxn]; //重儿子
int tot,pos;
void addedge(int u,int v)
{
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot ++;
} void dfs(int u,int fa,int d) //先处理出重儿子、dep、far、num
{
dep[u] = d;
far[u] = fa;
num[u] = 1;
for(int i = head[u]; i != -1; i = edge[i].next)
{
int v = edge[i].to;
if(v != fa)
{
dfs(v,u,d+1);
num[u] += num[v];
if(son[u] == -1 || num[v] > num[son[u]])
son[u] = v;
}
}
} void getpos(int u,int sp)
{
top[u] = sp;
p[u] = pos++;
fp[p[u]] = u;
if(son[u] == -1) return ;
getpos(son[u],sp);
for(int i = head[u]; i != -1; i = edge[i].next)
{
int v = edge[i].to;
if(v != far[u] && v != son[u])
getpos(v,v);
}
} struct Node
{
int l,r;
int flag;
int Max,Min;
} segtree[maxn*3]; void build(int i,int l,int r)
{
segtree[i].l = l;
segtree[i].r = r;
segtree[i].Max = 0;
segtree[i].Min = 0;
segtree[i].flag = 0;
if(l == r)
return ;
int mid = (l+r)/2;
build(i<<1,l,mid);
build((i<<1)|1,mid+1,r);
} void push_up(int i)
{
segtree[i].Max = max(segtree[i<<1].Max,segtree[(i<<1)|1].Max);
segtree[i].Min = min(segtree[i<<1].Min,segtree[(i<<1)|1].Min);
} void push_down(int i)
{
if(segtree[i].l == segtree[i].r)
return ;
if(segtree[i].flag)
{
segtree[i<<1].Max = -segtree[i<<1].Max;
segtree[i<<1].Min = -segtree[i<<1].Min;
swap(segtree[i<<1].Max,segtree[i<<1].Min);
segtree[i<<1].flag ^= 1; segtree[(i<<1)|1].Max = -segtree[(i<<1)|1].Max;
segtree[(i<<1)|1].Min = -segtree[(i<<1)|1].Min;
segtree[(i<<1)|1].flag ^= 1;
swap(segtree[(i<<1)|1].Max,segtree[(i<<1)|1].Min); segtree[i].flag = 0;
}
} void update(int i,int k,int val)
{
if(segtree[i].l == k && segtree[i].r == k)
{
segtree[i].Max = val;
segtree[i].Min = val;
segtree[i].flag = 0;
return ;
}
push_down(i);
int mid = (segtree[i].l+segtree[i].r)>>1;
if(k <= mid) update(i<<1,k,val);
else update((i<<1)|1,k,val);
push_up(i);
} void negat(int i,int l,int r)
{
if((segtree[i].l == l && segtree[i].r == r))
{
segtree[i].Max = -segtree[i].Max;
segtree[i].Min = -segtree[i].Min;
swap(segtree[i].Max,segtree[i].Min);
segtree[i].flag ^= 1;
return;
}
push_down(i);
int mid = (segtree[i].l+segtree[i].r)>>1;
if(r <= mid) negat(i<<1,l,r);
else if(l > mid) negat((i<<1)|1,l,r);
else
{
negat(i<<1,l,mid);
negat((i<<1)|1,mid+1,r);
}
push_up(i);
} int query(int i,int l,int r)
{
if(segtree[i].l == l && segtree[i].r == r)
{
return segtree[i].Max;
}
push_down(i);
int mid = (segtree[i].l+segtree[i].r)>>1;
if(r <= mid) return query(i<<1,l,r);
else if(l > mid) return query((i<<1)|1,l,r);
else return max(query(i<<1,l,mid),query((i<<1)|1,mid+1,r));
push_up(i);
} int fin(int l,int r)
{
int f1 = top[l];
int f2 = top[r];
int tt = -100000000;
while(f1 != f2)
{
if(dep[f1] < dep[f2])
{
swap(f1,f2);
swap(l,r);
}
tt = max(query(1,p[f1],p[l]),tt);
l = far[f1];
f1 = top[l];
}
if(l == r)
return tt;
if(dep[l] > dep[r]) swap(l,r);
return max(tt,query(1,p[son[l]],p[r]));
} void change(int l,int r)
{
int f1 = top[l];
int f2 = top[r];
while(f1 != f2)
{
if(dep[f1] < dep[f2])
{
swap(f1,f2);
swap(l,r);
}
negat(1,p[f1],p[l]);
l = far[f1];
f1 = top[l];
}
if(l == r) return ;
if(dep[l] > dep[r]) swap(l,r);
negat(1,p[son[l]],p[r]);
} void ini()
{
tot = 0;
pos = 1;
memset(head,-1,sizeof(head));
memset(son,-1,sizeof(son));
} int me[maxn][2];
int va[maxn]; int main()
{
int T;
int n;
//freopen("in.txt","r",stdin);
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
ini();
for(int i = 1; i < n; i++)
{
scanf("%d%d%d",&me[i][0],&me[i][1],&va[i]);
addedge(me[i][0],me[i][1]);
addedge(me[i][1],me[i][0]);
} dfs(1,0,0);
getpos(1,1);
build(1,1,n);
for(int i = 1; i < n; i++)
{
if(dep[me[i][0]] > dep[me[i][1]])
swap(me[i][0],me[i][1]);
update(1,p[me[i][1]],va[i]);
}
char ch[10];
while(scanf("%s",ch) == 1)
{
;
if(ch[0] == 'D') break;
int u,v;
scanf("%d%d",&u,&v);
if(ch[0] == 'Q')
printf("%d\n",fin(u,v));
else if(ch[0] == 'N')
change(u,v);
else
update(1,p[me[u][1]],v);
}
}
return 0;
}

  

poj3237 树链部分 边权模板的更多相关文章

  1. 树链剖分边权模板spoj375

    树链剖分是树分解成多条链来解决树上两点之间的路径上的问题 如何求出树链:第一次dfs求出树上每个结点的大小和深度和最大的儿子,第二次dfs就能将最大的儿子串起来并hash(映射)到线段树上(或者其他数 ...

  2. poj3237树链剖分边权+区间取负

    树链剖分+线段树lazy-tag在树链上操作时千万不要写错.. /* 树链剖分+线段树区间变负 */ #include<iostream> #include<cstring> ...

  3. hdu3966 树链剖分点权模板+线段树区间更新/树状数组区间更新单点查询

    点权树的模板题,另外发现树状数组也是可以区间更新的.. 注意在对链进行操作时方向不要搞错 线段树版本 #include<bits/stdc++.h> using namespace std ...

  4. POJ3237 Tree 树链剖分 边权

    POJ3237 Tree 树链剖分 边权 传送门:http://poj.org/problem?id=3237 题意: n个点的,n-1条边 修改单边边权 将a->b的边权取反 查询a-> ...

  5. 计蒜客 38229.Distance on the tree-1.树链剖分(边权)+可持久化线段树(区间小于等于k的数的个数)+离散化+离线处理 or 2.树上第k大(主席树)+二分+离散化+在线查询 (The Preliminary Contest for ICPC China Nanchang National Invitational 南昌邀请赛网络赛)

    Distance on the tree DSM(Data Structure Master) once learned about tree when he was preparing for NO ...

  6. BZOJ 1036 [ZJOI2008]树的统计Count (树链剖分 - 点权剖分 - 单点权修改)

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1036 树链剖分模版题,打的时候注意点就行.做这题的时候,真的傻了,单词拼错检查了一个多小时 ...

  7. POJ2763 Housewife Wind 树链剖分 边权

    POJ2763 Housewife Wind 树链剖分 边权 传送门:http://poj.org/problem?id=2763 题意: n个点的,n-1条边,有边权 修改单边边权 询问 输出 当前 ...

  8. HDU3669 Aragorn's Story 树链剖分 点权

    HDU3669 Aragorn's Story 树链剖分 点权 传送门:http://acm.hdu.edu.cn/showproblem.php?pid=3966 题意: n个点的,m条边,每个点都 ...

  9. 洛谷 P3384 【模板】树链剖分-树链剖分(点权)(路径节点更新、路径求和、子树节点更新、子树求和)模板-备注结合一下以前写的题目,懒得写很详细的注释

    P3384 [模板]树链剖分 题目描述 如题,已知一棵包含N个结点的树(连通且无环),每个节点上包含一个数值,需要支持以下操作: 操作1: 格式: 1 x y z 表示将树从x到y结点最短路径上所有节 ...

随机推荐

  1. Scrum 冲刺 第三日

    Scrum 冲刺 第三日 目录 要求 项目链接 燃尽图 问题 今日任务 明日计划 成员贡献量 要求 各个成员今日完成的任务(如果完成的任务为开发或测试任务,需给出对应的Github代码签入记录截图:如 ...

  2. 关于Android 7.0(API24)相机的问题汇总

    在开发Android项目的时候,我们会用到相机,有些时候只是开发一个普通的扫码,仅仅赋予一下 权限 就好了,但是有些时候是需要拍照和从相册中获取照片的.我们在Android 5.0以及5.0之前调用相 ...

  3. nyoj 数的长度

    描述 N!阶乘是一个非常大的数,大家都知道计算公式是N!=N*(N-1)······*2*1.现在你的任务是计算出N!的位数有多少(十进制)?   输入 首行输入n,表示有多少组测试数据(n<1 ...

  4. svn的使用技巧

    就是如果想一个文件在提交的时候不被上传,可以设置忽略这样提交的时候就不会被上传

  5. 电子称DIY(贴应变片+写代码)

    第一步.应变片介绍   ---------------------------------------------------------------------------------------- ...

  6. ASP.NET CORE 自定义视图组件(ViewComponent)注意事项

    *红色字体为固定命名,蓝色为一般命名规则,黄色为ASP.NET CORE 默认查找文件名 概要:1.简单ViewComponent的用法 2.ViewComponent控制器返回值  3.注意事项 1 ...

  7. vue组件详解(二)——使用props传递数据

    在 Vue 中,父子组件的关系可以总结为 props向下传递,事件向上传递.父组件通过 props 给子组件下发数据,子组件通过事件给父组件发送消息.看看它们是怎么工作的.  一.基本用法 组件不仅仅 ...

  8. Angular 学习笔记 ( CDK - Accessibility )

    @angular/ckd 是 ng 对于 ui 组建的基础架构. 是由 material 团队开发与维护的, 之所以会有 cdk 看样子是因为在开发 material 的时候随便抽象一个层次出来给大家 ...

  9. Docker学习笔记 - Docker的简介

    传统硬件虚拟化:虚拟硬件,事先分配资源,在虚拟的硬件上安装操作系统,虚拟机启动起来以后资源就会被完全占用. 操作系统虚拟化:docker是操作系统虚拟化,借助操作系统内核特性(命名空间.cgroups ...

  10. Spring Security 入门(1-3-5)Spring Security - remember me!

    Remember-Me 功能 概述 Remember-Me 是指网站能够在 Session 之间记住登录用户的身份,具体来说就是我成功认证一次之后在一定的时间内我可以不用再输入用户名和密码进行登录了, ...