[Poj3128]Leonardo's Notebook
[Poj3128]Leonardo's Notebook
标签: 置换
题意
给你一个置换\(B\),让你判断是否有一个置换\(A\)使得\(B=A^2\)。
题解
置换可以写成循环的形式,所以我们不妨来研究循环平方的特性。
对于一个奇数长度的循环$$(a_1 a_2 a_3 a_4 ...... a_{2n+1}),(a_1 a_2 a_3 a_4 ...... a_{2n+1})(a_1 a_2 a_3 a_4 ...... a_{2n+1})=(a_1 a_3 a_5 ...... a_{2n+1} a_2 a_4 ...... a_{2n})$$
平方之后仍是一个奇数长度的循环。
而偶数长度的循环平方之后则会分成两个长度相等的循环。
所以本题就很容易解决了。把置换写成循环的形式后,奇数长度的循环可以写成一个奇数长度循环的平方。对于偶数长度的循环只可能是一个偶数长度循环的平方。
我们只需要判断每一个偶数长度的循环的个数是不是偶数就行了。
Code
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<set>
#include<queue>
#include<map>
#include<stack>
#include<vector>
using namespace std;
#define ll long long
#define REP(i,a,b) for(int i=(a),_end_=(b);i<=_end_;i++)
#define DREP(i,a,b) for(int i=(a),_end_=(b);i>=_end_;i--)
#define EREP(i,a) for(int i=start[(a)];i;i=e[i].next)
inline int read()
{
int sum=0,p=1;char ch=getchar();
while(!(('0'<=ch && ch<='9') || ch=='-'))ch=getchar();
if(ch=='-')p=-1,ch=getchar();
while('0'<=ch && ch<='9')sum=sum*10+ch-48,ch=getchar();
return sum*p;
}
const int maxn=30;
int a[maxn],cnt[maxn];
int vis[maxn];
void init()
{
memset(vis,0,sizeof(vis));
memset(cnt,0,sizeof(cnt));
char s[maxn];
cin>>s;
REP(i,1,26)a[i]=s[i-1]-'A'+1;
}
void doing()
{
REP(i,1,26)
{
if(vis[i])continue;
int j=a[i],sum=1;
vis[i]=1;
while(j!=i)
{
vis[j]=1;
j=a[j];
sum++;
}
cnt[sum]++;
}
int flag=1;
REP(i,1,13)
{
if(cnt[i*2] & 1)
{
flag = 0;
break;
}
}
if(flag)cout<<"Yes"<<endl;
else cout<<"No"<<endl;
}
int main()
{
int t=read();
while(t)
{
t--;
init();
doing();
}
return 0;
}
[Poj3128]Leonardo's Notebook的更多相关文章
- POJ 3128 Leonardo's Notebook (置换)
Leonardo's Notebook Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 2324 Accepted: 98 ...
- LA 3641 (置换 循环的分解) Leonardo's Notebook
给出一个26个大写字母的置换B,是否存在A2 = B 每个置换可以看做若干个循环的乘积.我们可以把这些循环看成中UVa 10294的项链, 循环中的数就相当于项链中的珠子. A2就相当于将项链旋转了两 ...
- poj 3128 Leonardo's Notebook (置换群的整幂运算)
题意:给你一个置换P,问是否存在一个置换M,使M^2=P 思路:资料参考 <置换群快速幂运算研究与探讨> https://wenku.baidu.com/view/0bff6b1c6bd9 ...
- POJ 3128 Leonardo's Notebook [置换群]
传送门 题意:26个大写字母的置换$B$,是否存在置换$A$满足$A^2=B$ $A^2$,就是在循环中一下子走两步 容易发现,长度$n$为奇数的循环走两步还是$n$次回到原点 $n$为偶数的话是$\ ...
- Leonardo's Notebook UVALive - 3641(置换)
题意: 给出26个大写字母的置换B,问是否存在一个置换A,使得A2 = B 解析: 两个长度为n的相同循环相乘,1.当n为奇数时结果也是一个长度为n的循环:2. 当n为偶数时分裂为两个长度为n/2 ( ...
- LA3641 Leonardo's Notebook
题意 PDF 分析 给出一个26个大写字母的置换B,是否存在A^2 = B 每个置换可以看做若干个循环的乘积.我们可以把这些循环看成中UVa 10294的项链, 循环中的数就相当于项链中的珠子. A^ ...
- UVaLive 3641 Leonardo's Notebook (置换)
题意:给定一个置换 B 问是否则存在一个置换 A ,使用 A^2 = B. 析:可以自己画一画,假设 A = (a1, a2, a3)(b1, b2, b3, b4),那么 A^2 = (a1, a2 ...
- 【LA 3641】 Leonardo's Notebook (置换群)
[题意] 给出26个大写字母组成 字符串B问是否存在一个置换A使得A^2 = B [分析] 置换前面已经说了,做了这题之后有了更深的了解. 再说说置换群. 首先是群. 置换群的元素是置换,运算时是 ...
- poj 3128 Leonardo's Notebook——思路(置换)
题目:http://poj.org/problem?id=3128 从环的角度考虑. 原来有奇数个点的环,现在点数不变: 原来有偶数个点的环(设有 k 个点),现在变成两个大小为 k/2 的环. 所以 ...
随机推荐
- php中session_start()函数的作用
php中session_start()函数的作用 用$_SESION之前必须要session_start()----其中之一的功能,$_SESSION是服务器端的cookie,相当一个大数组(浏览器关 ...
- python实现冒泡排序和快速排序
冒泡排序和快排的python实现: data = [1, 3, 5, 10, 4, 7] times = 0 "冒泡排序" for i in range(len(data)): f ...
- get最简单直接粗爆git与github教程
Git是分布式版本控制系统(可以理解为文件管理拓展工具) github一个在线文件托管系统(可以理解为一个在线云盘) 准备工作,在git官网下载git软件件,安装git软件,以windows.为例,下 ...
- Linux - ubuntu中vi不能正常使用方向键与退格键的问题
一度怀疑是键盘坏了! 之前安装solaris也是这个问题! 重新安装vim就可以了! $sudo apt-get remove vim-common $sudo apt-get install vim
- 未找到约束ContractName Microsoft.VisualStudio.Text.ITextDocumentFactoryServiceRequiredTypeIdentity匹配的导出的解决办法
未找到约束ContractName Microsoft.VisualStudio.Text.ITextDocumentFactoryServiceRequiredTypeIdentity Micros ...
- 2017-06-30(ps pstree top kill w killall pkill)
ps(查看系统下所有进程) -a 显示一个终端的所有进程,除了会话引线 -u 显示进程的归属用户以及内存的使用情况 -x 显示没有控制终端的进程 -l 长格式显示,更加详细的信息 -e 显示所有的进程 ...
- python 闭包初识
def func_100(val): passline = 60 if val >= passline: print('pass') else: print('failed') def func ...
- 一个Android上的以滑动揭示的方式显示并切换图片的View
SlideView是一个Android上的以滑动揭示的方式显示并切换图片的View,以视觉对比的方式把一套相似的图片展示出来. 示例 翻页图片揭示效果: 特性 设置一组(List<ImageIn ...
- Docker for Web Developers目录
在OpenStack在私有云占主导定位之后,后起之秀Docker在PaaS平台.CI/CD.微服务领域展露锋芒.作为Web Developers,我们有必要学习和掌握这门技术. 1. 运行第一个Doc ...
- try{}catch(e){}不能捕获到异常
只能捕获到ReferenceError异常,I don't know why. try{ aa();//这是一个未被定义的方法 }catch(e){ if(e instanceof Reference ...