scrapy-redis是一个基于redis的scrapy组件,通过它可以快速实现简单分布式爬虫程序,该组件本质上提供了三大功能:

  • scheduler - 调度器
  • dupefilter - URL去重规则(被调度器使用)
  • pipeline   - 数据持久化

scrapy-redis组件

1. URL去重

定义去重规则(被调度器调用并应用)

    a. 内部会使用以下配置进行连接Redis

        # REDIS_HOST = 'localhost'                            # 主机名
# REDIS_PORT = 6379 # 端口
# REDIS_URL = 'redis://user:pass@hostname:9001' # 连接URL(优先于以上配置)
# REDIS_PARAMS = {} # Redis连接参数 默认:REDIS_PARAMS = {'socket_timeout': 30,'socket_connect_timeout': 30,'retry_on_timeout': True,'encoding': REDIS_ENCODING,})
# REDIS_PARAMS['redis_cls'] = 'myproject.RedisClient' # 指定连接Redis的Python模块 默认:redis.StrictRedis
# REDIS_ENCODING = "utf-8" # redis编码类型 默认:'utf-8' b. 去重规则通过redis的集合完成,集合的Key为: key = defaults.DUPEFILTER_KEY % {'timestamp': int(time.time())}
默认配置:
DUPEFILTER_KEY = 'dupefilter:%(timestamp)s' c. 去重规则中将url转换成唯一标示,然后在redis中检查是否已经在集合中存在 from scrapy.utils import request
from scrapy.http import Request req = Request(url='http://www.cnblogs.com/wupeiqi.html')
result = request.request_fingerprint(req)
print(result) # 8ea4fd67887449313ccc12e5b6b92510cc53675c PS:
- URL参数位置不同时,计算结果一致;
- 默认请求头不在计算范围,include_headers可以设置指定请求头
示例:
from scrapy.utils import request
from scrapy.http import Request req = Request(url='http://www.baidu.com?name=8&id=1',callback=lambda x:print(x),cookies={'k1':'vvvvv'})
result = request.request_fingerprint(req,include_headers=['cookies',]) print(result) req = Request(url='http://www.baidu.com?id=1&name=8',callback=lambda x:print(x),cookies={'k1':666}) result = request.request_fingerprint(req,include_headers=['cookies',]) print(result) """
# Ensure all spiders share same duplicates filter through redis.
# DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter"

2. 调度器

"""
调度器,调度器使用PriorityQueue(有序集合)、FifoQueue(列表)、LifoQueue(列表)进行保存请求,并且使用RFPDupeFilter对URL去重 a. 调度器
SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.PriorityQueue' # 默认使用优先级队列(默认),其他:PriorityQueue(有序集合),FifoQueue(列表)、LifoQueue(列表)
SCHEDULER_QUEUE_KEY = '%(spider)s:requests' # 调度器中请求存放在redis中的key
SCHEDULER_SERIALIZER = "scrapy_redis.picklecompat" # 对保存到redis中的数据进行序列化,默认使用pickle
SCHEDULER_PERSIST = True # 是否在关闭时候保留原来的调度器和去重记录,True=保留,False=清空
SCHEDULER_FLUSH_ON_START = True # 是否在开始之前清空 调度器和去重记录,True=清空,False=不清空
SCHEDULER_IDLE_BEFORE_CLOSE = 10 # 去调度器中获取数据时,如果为空,最多等待时间(最后没数据,未获取到)。
SCHEDULER_DUPEFILTER_KEY = '%(spider)s:dupefilter' # 去重规则,在redis中保存时对应的key
SCHEDULER_DUPEFILTER_CLASS = 'scrapy_redis.dupefilter.RFPDupeFilter'# 去重规则对应处理的类 """
# Enables scheduling storing requests queue in redis.
SCHEDULER = "scrapy_redis.scheduler.Scheduler" # Default requests serializer is pickle, but it can be changed to any module
# with loads and dumps functions. Note that pickle is not compatible between
# python versions.
# Caveat: In python 3.x, the serializer must return strings keys and support
# bytes as values. Because of this reason the json or msgpack module will not
# work by default. In python 2.x there is no such issue and you can use
# 'json' or 'msgpack' as serializers.
# SCHEDULER_SERIALIZER = "scrapy_redis.picklecompat" # Don't cleanup redis queues, allows to pause/resume crawls.
# SCHEDULER_PERSIST = True # Schedule requests using a priority queue. (default)
# SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.PriorityQueue' # Alternative queues.
# SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.FifoQueue'
# SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.LifoQueue' # Max idle time to prevent the spider from being closed when distributed crawling.
# This only works if queue class is SpiderQueue or SpiderStack,
# and may also block the same time when your spider start at the first time (because the queue is empty).
# SCHEDULER_IDLE_BEFORE_CLOSE = 10  

3. 数据持久化

2. 定义持久化,爬虫yield Item对象时执行RedisPipeline

    a. 将item持久化到redis时,指定key和序列化函数

        REDIS_ITEMS_KEY = '%(spider)s:items'
REDIS_ITEMS_SERIALIZER = 'json.dumps' b. 使用列表保存item数据

4. 起始URL相关

"""
起始URL相关 a. 获取起始URL时,去集合中获取还是去列表中获取?True,集合;False,列表
REDIS_START_URLS_AS_SET = False # 获取起始URL时,如果为True,则使用self.server.spop;如果为False,则使用self.server.lpop
b. 编写爬虫时,起始URL从redis的Key中获取
REDIS_START_URLS_KEY = '%(name)s:start_urls' """
# If True, it uses redis' ``spop`` operation. This could be useful if you
# want to avoid duplicates in your start urls list. In this cases, urls must
# be added via ``sadd`` command or you will get a type error from redis.
# REDIS_START_URLS_AS_SET = False # Default start urls key for RedisSpider and RedisCrawlSpider.
# REDIS_START_URLS_KEY = '%(name)s:start_urls'

scrapy-redis示例

# DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter"
#
#
# from scrapy_redis.scheduler import Scheduler
# from scrapy_redis.queue import PriorityQueue
# SCHEDULER = "scrapy_redis.scheduler.Scheduler"
# SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.PriorityQueue' # 默认使用优先级队列(默认),其他:PriorityQueue(有序集合),FifoQueue(列表)、LifoQueue(列表)
# SCHEDULER_QUEUE_KEY = '%(spider)s:requests' # 调度器中请求存放在redis中的key
# SCHEDULER_SERIALIZER = "scrapy_redis.picklecompat" # 对保存到redis中的数据进行序列化,默认使用pickle
# SCHEDULER_PERSIST = True # 是否在关闭时候保留原来的调度器和去重记录,True=保留,False=清空
# SCHEDULER_FLUSH_ON_START = False # 是否在开始之前清空 调度器和去重记录,True=清空,False=不清空
# SCHEDULER_IDLE_BEFORE_CLOSE = # 去调度器中获取数据时,如果为空,最多等待时间(最后没数据,未获取到)。
# SCHEDULER_DUPEFILTER_KEY = '%(spider)s:dupefilter' # 去重规则,在redis中保存时对应的key
# SCHEDULER_DUPEFILTER_CLASS = 'scrapy_redis.dupefilter.RFPDupeFilter'# 去重规则对应处理的类
#
#
#
# REDIS_HOST = '10.211.55.13' # 主机名
# REDIS_PORT = # 端口
# # REDIS_URL = 'redis://user:pass@hostname:9001' # 连接URL(优先于以上配置)
# # REDIS_PARAMS = {} # Redis连接参数 默认:REDIS_PARAMS = {'socket_timeout': ,'socket_connect_timeout': ,'retry_on_timeout': True,'encoding': REDIS_ENCODING,})
# # REDIS_PARAMS['redis_cls'] = 'myproject.RedisClient' # 指定连接Redis的Python模块 默认:redis.StrictRedis
# REDIS_ENCODING = "utf-8" # redis编码类型 默认:'utf-8'

配置文件

import scrapy

class ChoutiSpider(scrapy.Spider):
name = "chouti"
allowed_domains = ["chouti.com"]
start_urls = (
'http://www.chouti.com/',
) def parse(self, response):
for i in range(,):
yield

爬虫文件

scrapy-redis使用以及剖析的更多相关文章

  1. Redis源码剖析

    Redis源码剖析和注释(一)---链表结构 Redis源码剖析和注释(二)--- 简单动态字符串 Redis源码剖析和注释(三)--- Redis 字典结构 Redis源码剖析和注释(四)--- 跳 ...

  2. 基于Python,scrapy,redis的分布式爬虫实现框架

    原文  http://www.xgezhang.com/python_scrapy_redis_crawler.html 爬虫技术,无论是在学术领域,还是在工程领域,都扮演者非常重要的角色.相比于其他 ...

  3. Redis源码剖析--源码结构解析

    请持续关注我的个人博客:https://zcheng.ren 找工作那会儿,看了黄建宏老师的<Redis设计与实现>,对redis的部分实现有了一个简明的认识.在面试过程中,redis确实 ...

  4. Redis源码剖析和注释(七)--- 快速列表(quicklist)

    Redis 快速列表(quicklist)1. 介绍quicklist结构是在redis 3.2版本中新加的数据结构,用在列表的底层实现. 通过列表键查看一下:redis 列表键命令详解 127.0. ...

  5. Scrapy爬虫及案例剖析

    由于互联网的极速发展,所有现在的信息处于大量堆积的状态,我们既要向外界获取大量数据,又要在大量数据中过滤无用的数据.针对我们有益的数据需要我们进行指定抓取,从而出现了现在的爬虫技术,通过爬虫技术我们可 ...

  6. Scrapy+redis实现分布式爬虫

    概述 什么是分布式爬虫 需要搭建一个由n台电脑组成的机群,然后在每一台电脑中执行同一组程序,让其对同一网络资源进行联合且分布的数据爬取. 原生Scrapy无法实现分布式的原因 原生Scrapy中调度器 ...

  7. Redis分布式缓存剖析及大厂面试精髓v6.2.6

    概述 官方说明 Redis官网 https://redis.io/ 最新版本6.2.6 Redis中文官网 http://www.redis.cn/ 不过中文官网的同步更新维护相对要滞后不少时间,但对 ...

  8. Redis主从复制深入剖析

    Redis是一个开源的,遵守BSD许可协议的key/value缓存系统,并由其高效的响应速度以及丰富的数据结构而闻名.Redis在京东的使用也是非常普遍的,包括很多关键业务上的 使用,由于Redis官 ...

  9. scrapy+redis去重实现增量抓取

    class ProjectnameDownloaderMiddleware(object): # Not all methods need to be defined. If a method is ...

  10. Redis源码剖析--列表t_list实现

    Redis中的列表对象比较特殊,在版本3.2之前,列表底层的编码是 ziplist 和 linkedlist 实现的, 但是在版本3.2之后,重新引入了一个 quicklist 的数据结构,列表的底层 ...

随机推荐

  1. 简单解决python安装中的Unable to find vcvarsall.bat问题

    使用python36安装python的murmurhash的时候遇到上述问题,原因是没有找到vcvarsall.bat.查找vcvarsall.bat的方法是定义在_msvccompiler.py文件 ...

  2. 利用spring AOP实现每个请求的日志输出

    前提条件: 除了spring相关jar包外,还需要引入aspectj包. <dependency> <groupId>org.aspectj</groupId> & ...

  3. docker环境下使用xdebug进行断点调试

    最近把本地环境切换成了docker的环境,便于快速运行和开发,确实比较给力,但是也遇到了问题,以前的本地xdebug断点调试都用不了,弄了几个小时终于搞定了 docker还是坑多,绕,下面把docke ...

  4. Python -- Records项目学习

    Records学习笔记 Records链接地址 1. __getitem__(self, key) 内建方法(Build-in) 例子: class Test(object): def __getit ...

  5. Linux环境下Swap配置方法

    Linux环境下Swap配置方法 场景: 今天下午安装一个CentOS6.5操作系统,忘记配置swap分区.看看如何安装系统之后,增加和删除swap分区.方法如下:1.内存占用情况[root@josh ...

  6. 笔试常考--浏览器兼容性问题及解决方案(CSS)

    问题一:不同浏览器的标签默认的外补丁和内补丁不同 问题现象:随便写几个标签,不加样式控制的情况下,各自的margin 和padding差异较大. 解决方案:css里加: ;;} 备注:这个是最常见的也 ...

  7. location和location.href跳转url的区别

    使用 location = url  跳转,如果本地之前已经载入过该页面并有缓存,那么会直接读取本地的缓存,缓存机制是由本地浏览器设置决定的.状态码为:  200 OK (from cache) . ...

  8. 简单谈谈DNS的工作原理及实践

    DNS协议简介 dns(Domain Name System)是一个全球化的分布式数据库系统,用于存储域名和互联网IP地址的映射关系.dns协议是计算机协议栈应用层中,应用最广泛的协议之一.用户每一次 ...

  9. linux下各种解压方法

    linux下各种格式的压缩包的压缩.解压方法.但是部分方法我没有用到,也就不全,希望大家帮我补充,我将随时修改完善,谢谢!    .tar  解包:tar xvf FileName.tar  打包:t ...

  10. 记录python接口自动化测试--unittest框架基本应用(第二目)

    在第一目里写了几个简单demo,并把调用get和post请求的方法封装到了一个类里,这次结合python自带的unittest框架,用之前封装的方法来写一个接口测试demo 1.unittest简单用 ...