大概题意

有\(n\)个数,可以为\(0/1\),给\(m\)个条件,表示某两个数经过\(or, and, xor\)后的数是多少

判断是否有解

Sol

\(2-SAT\)判定

建图

# include <iostream>
# include <stdio.h>
# include <stdlib.h>
# include <string.h>
# include <math.h>
# include <algorithm>
# define RG register
# define IL inline
# define Fill(a, b) memset(a, b, sizeof(a))
using namespace std;
typedef long long ll;
const int _(2005);
const int __(4e6 + 5); IL int Input(){
RG int x = 0, z = 1; RG char c = getchar();
for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
return x * z;
} int n, m, first[_], cnt, num;
int S[_], vis[_], dfn[_], low[_], Index, col[_];
struct Edge{
int to, next;
} edge[__]; IL void Add(RG int u, RG int v){
edge[cnt] = (Edge){v, first[u]}; first[u] = cnt++;
} IL void Tarjan(RG int u){
vis[u] = 1, dfn[u] = low[u] = ++Index, S[++S[0]] = u;
for(RG int e = first[u]; e != -1; e = edge[e].next){
RG int v = edge[e].to;
if(!dfn[v]) Tarjan(v), low[u] = min(low[u], low[v]);
else if(vis[v]) low[u] = min(low[u], dfn[v]);
}
if(dfn[u] != low[u]) return;
RG int v = S[S[0]--]; col[v] = ++num, vis[v] = 0;
while(v != u) v = S[S[0]--], col[v] = num, vis[v] = 0;
} int main(RG int argc, RG char* argv[]){
Fill(first, -1), n = Input(), m = Input();
for(RG int i = 1; i <= m; ++i){
RG int u = Input() + 1, v = Input() + 1, w = Input();
RG char op; scanf(" %c", &op);
if(op == 'A'){
if(w) Add(u, v), Add(v, u), Add(u + n, u), Add(v + n, v);
else Add(u, v + n), Add(v, u + n);
}
else if(op == 'O'){
if(w) Add(u + n, v), Add(v + n, u);
else Add(u, u + n), Add(v, v + n), Add(u + n, v + n), Add(v + n, u + n);
}
else{
if(w) Add(u, v + n), Add(v, u + n), Add(u + n, v), Add(v + n, u);
else Add(u, v), Add(v, u), Add(u + n, v + n), Add(v + n, u + n);
}
}
for(RG int i = 1, tmp = n << 1; i <= tmp; ++i)
if(!dfn[i]) Tarjan(i);
for(RG int i = 1; i <= n; ++i)
if(col[i] == col[i + n]) return puts("NO"), 0;
return puts("YES"), 0;
}

Poj3678:Katu Puzzle的更多相关文章

  1. POJ3678:Katu Puzzle——题解

    http://poj.org/problem?id=3678 总觉得这题比例题简单. 设a为x取0的点,a+n为x取1的点. 我们还是定义a到b表示取a必须取b. 那么我们有: 当AND: 1.当c= ...

  2. poj3678 Katu Puzzle 2-SAT

    Katu Puzzle Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6714   Accepted: 2472 Descr ...

  3. POJ3678 Katu Puzzle 【2-sat】

    题目 Katu Puzzle is presented as a directed graph G(V, E) with each edge e(a, b) labeled by a boolean ...

  4. poj 3678 Katu Puzzle(2-sat)

    Description Katu Puzzle ≤ c ≤ ). One Katu ≤ Xi ≤ ) such that for each edge e(a, b) labeled by op and ...

  5. POJ 3678 Katu Puzzle(2 - SAT) - from lanshui_Yang

    Description Katu Puzzle is presented as a directed graph G(V, E) with each edge e(a, b) labeled by a ...

  6. POJ 3678 Katu Puzzle(2-SAT,合取范式大集合)

    Katu Puzzle Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9987   Accepted: 3741 Descr ...

  7. POJ 3678 Katu Puzzle (2-SAT)

                                                                         Katu Puzzle Time Limit: 1000MS ...

  8. POJ 3678 Katu Puzzle (经典2-Sat)

    Katu Puzzle Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6553   Accepted: 2401 Descr ...

  9. poj 3678 Katu Puzzle 2-SAT 建图入门

    Description Katu Puzzle is presented as a directed graph G(V, E) with each edge e(a, b) labeled by a ...

随机推荐

  1. [Python Study Notes] Python的安装

    Windows: 1.下载安装包: 转到Python官网https://www.python.org/downloads/  ,下载最新版本的Python. 2.安装 安装到自定义的安装路径下. 3. ...

  2. zabbix客户端一键安装脚本(主动模式监控)

    #!/bin/bash basepath=$(cd `dirname $0`; pwd)SHELL_DIR="${basepath}/shell"PACKAGE_DIR=" ...

  3. js收藏代码

    js收藏代码~ 1. oncontextmenu="window.event.returnValue=false" 将彻底屏蔽鼠标右键 <table border oncon ...

  4. Java经典编程题50道之四十

    将几个字符串排序(按英文字母的顺序). public class Example40 {    public static void main(String[] args) {        Stri ...

  5. thinkPHP替换SQL变量

    使用tp里M()->where(pb_id=%d and course=%d and DATE_FORMAT(pub_time, \"%H:%i:%s\") < &qu ...

  6. Django静态文件路径设置

    提示 : Error fetching command 'collectstatic': You're using the staticfiles app without having set the ...

  7. 傅里叶变换 - Fourier Transform

    傅里叶级数 傅里叶在他的专著<热的解析理论>中提出,任何一个周期函数都可以表示为若干个正弦函数的和,即: \[f(t)=a_0+\sum_{n=1}^{\infty}(a_ncos(n\o ...

  8. 【2016北京集训测试赛(十六)】 River (最大流)

    Description  Special Judge Hint 注意是全程不能经过两个相同的景点,并且一天的开始和结束不能用同样的交通方式. 题解 题目大意:给定两组点,每组有$n$个点,有若干条跨组 ...

  9. 使用SpringSecurity保护你的Eureka.

    因为注册中心基本上都是自己的应用在使用,应用不是特别多,可以写死,如果应用很多,那么就写入数据库把 pom <dependency> <groupId>org.springfr ...

  10. Hibernate入门这一篇就够了

    前言 本博文主要讲解介绍Hibernate框架,ORM的概念和Hibernate入门,相信你们看了就会使用Hibernate了! 什么是Hibernate框架? Hibernate是一种ORM框架,全 ...