2015ICCV会议最佳论文奖,即有着“计算机视觉界最高奖”之称的马尔奖(Marr Prize)授予了由微软剑桥研究院(Microsoft Research, Cambridge UK)、卡内基梅隆大学和意大利布鲁诺凯斯勒研究中心(Fondazione Bruno Kessler)合作的论文“深度神经决策森林(Deep Neural Decision Forests)”。论文提出将分类树模型和深度神经网络的特征学习相结合进行端到端训练的深度学习方法。该方法使用决策森林(decision forest)作为最终的预测模型,提出了一套完整的、联合的、全局的深度学习参数优化方法。在手写数据库MNIST和图像分类数据库ImageNet的实验中都取得了超越当前最好方法的结果。这是傅建龙老师、梅涛老师和罗杰波老师对本篇论文的简介。
本人最近要作这篇文章的组会报告,在以上三位老师介绍的基础上,有了大概的了解,对这篇论文进行了学习。我们做深度学习的同学都知道,怎么训练学习模型和测试是重点,即将深度学习框架和随机森林结合在一起,如何前向传播和反向传播呢?以及叶子节点预测分布的更新?本篇博客分为三个部分重点阐述这些问题。
一、前向传播

预备知识:由图可知,每个分离节点(split nodes)的参数由DNN来学习(representation learning),DNN最后一层是全连接层,每个节点单元的输出作为分离节点决策函数(d1,d2,...)的输入参数,本篇论文采用的决策函数是sigmoid函数。知道决策函数后,我们可以计算其路径函数(routing
function),每棵树的根节点,其路径函数的值赋予1,然后乘以该节点的决策函数值d,得到左边子节点的路径函数1*d,右边子节点的路径函数值为1*(1-d),以此类推,可以计算出每颗决策树节点的路径函数。
首先,我们要初始化分离节点决策函数的参数(theta),以及对叶子节点分布参数(pai)初始化为均匀分布。然后根据上面内容计算各个节点的路径函数(routing function)。当数据集的标签确定时,叶子节点的预测类别也是确定的,初始化时是均匀分布,当训练完成时,其(prediction)满足一定的概率分布。
然后,当样本来时,通过DNN,得到分离节点决策函数的参数,从而计算出决策函数和路径函数(routing function),到叶子节点时,我们使用该节点的路径函数乘以该节点监督类别的概率,作为预测输出,并通过对每个节点的预测输出进行求和,得到这棵树的预测输出,这样,我们就可以得到各个类别的概率输出。
二、反向传播

本篇论文的反向传播分为两个部分,第一部分是决策树的反向传播,第二部分是DNN的反向传播,紧跟在决策树后面,DNN的反向传播大家都很清楚。下面我们重点说一下本篇论文决策树如何反向传播?

由Decision tree决定的梯度部分,可以换算成如下公式:


即,由决策函数和A函数决定,在反向传播的过程中,首先达到的是叶子节点,通过以上公式,可以计算出叶子节点的决策函数和A函数,再往上,父节点的A函数由子节点的A函数相加得到,以此类推,只需一次反向遍历,就可以完成反向传播。
三、叶子节点分布函数
本篇论文采用交替迭代的方法,依次更新决策函数的参数和叶子节点分布函数,以上内容是对决策函数参数的迭代,对叶子节点分布函数的迭代如下:

为什么采用这个更新策略,文章作者在补充材料里进行了证明,即采用这种方式,目标函数是收敛的。本篇论文的迭代策略是:

以上是我对本文的理解,错误之处,烦请指出,谢谢!

关于2015 ICCV会议情况,推荐这篇文章:【CCCF动态】视觉的饕餮盛宴:第15届国际计算机视觉会议

解读“Deep Neural Decision Forests” 2015 Winner of the David Marr Prize的更多相关文章

  1. On Explainability of Deep Neural Networks

    On Explainability of Deep Neural Networks « Learning F# Functional Data Structures and Algorithms is ...

  2. 深度神经网络如何看待你,论自拍What a Deep Neural Network thinks about your #selfie

    Convolutional Neural Networks are great: they recognize things, places and people in your personal p ...

  3. Must Know Tips/Tricks in Deep Neural Networks

    Must Know Tips/Tricks in Deep Neural Networks (by Xiu-Shen Wei)   Deep Neural Networks, especially C ...

  4. Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week1, Assignment(Initialization)

    声明:所有内容来自coursera,作为个人学习笔记记录在这里. Initialization Welcome to the first assignment of "Improving D ...

  5. Must Know Tips/Tricks in Deep Neural Networks (by Xiu-Shen Wei)

    http://lamda.nju.edu.cn/weixs/project/CNNTricks/CNNTricks.html Deep Neural Networks, especially Conv ...

  6. [C4] Andrew Ng - Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization

    About this Course This course will teach you the "magic" of getting deep learning to work ...

  7. Training Deep Neural Networks

    http://handong1587.github.io/deep_learning/2015/10/09/training-dnn.html  //转载于 Training Deep Neural ...

  8. Introduction to Deep Neural Networks

    Introduction to Deep Neural Networks Neural networks are a set of algorithms, modeled loosely after ...

  9. Classifying plankton with deep neural networks

    Classifying plankton with deep neural networks The National Data Science Bowl, a data science compet ...

随机推荐

  1. C语言设计第一次作业

    1 (1)题目:求圆面积和周长 (2)流程图: (3)测试数据及运行结果: (4)实验分析:暂时没问题. 2 (1)题目:输入一个四位年份,判断其是否是闰年.闰年的判别条件是该年年份能被4整除但不能被 ...

  2. Linux 软件安装到 /usr,/usr/local/ 还是 /opt 目录区别

    Linux 的软件安装目录是也是有讲究的,理解这一点,在对系统管理是有益的 /usr:系统级的目录,可以理解为C:/Windows/, /usr/lib理解为C:/Windows/System32./ ...

  3. Tomcat访问路径去掉发布项目的项目名称

    需求: 把发布到Tomcat下的web项目,访问路径去掉项目名称 实现方式及原理: 方式一: 原理:Tomcat的默认根目录是ROOT,实际上ROOT这个项目在实际生产环境是没有用的,所以我们可以用我 ...

  4. vue中的eventBus

    在vue2中,父子组件传递数据,父组件可以直接传递数据进子组件,而子组件通过调用父组件传递进来的方法,将自己的数据传递回去. 那兄弟组件之间,或者是兄弟组件的子组件之间如何传递呢? 当然vuex是一种 ...

  5. jdk1.7和jdk1.8区别

    转自:http://www.2cto.com/kf/201307/225968.html 本文是我学习了解了jdk7和jdk8的一些新特性的一些资料,有兴趣的大家可以浏览下下面的内容. 官方文档:ht ...

  6. js改变dom对象样式

    object.style.display = value; objcet对象必须是确定单个对象. 若以class名和标签名查找,需要指定对象集合中的第几个.

  7. Mysql数据库连接报错!1130:host XXX is not allowed to connect to this mysql server

    我猜想是可能是连接的用户权限问题.结果这样子操作mysql库,可以解决此问题.在本机登入mysql后,更改 “mysql” 数据库里的 “user” 表里的 “host” 项,从”localhost” ...

  8. FJUT寒假作业第三周数蚂蚁(记录第一道并查集)

    http://210.34.193.66:8080/vj/Contest.jsp?cid=162#P7 思路:用并查集合并集合,最后遍历,找到集合的根的个数. 并查集是森林,森林中的每一颗树是一个集合 ...

  9. R语言集合操作

    熟练运用R语言的集合操作在很多时候可以省去for循环,从而提升数据处理效率.废话不多说,集合操作相对简单,贴一段代码就懂了! > A<-: > A [] > B<-,,) ...

  10. windows资源管理器中配置右键bash here

    windows下安装了git后有git bash here 但是安装了cygwin没有bash here 我们可以通过修改注册表的方式自己做一个 Win10下在注册表内有一般有两个默认的 cmd 和 ...