Description

已知一个长度为 n 的整数数列 a[1],a[2],…,a[n] ,给定查询参数 l、r ,问在 [l,r] 区间内,有多少连续子
序列满足异或和等于 k 。
也就是说,对于所有的 x,y (l≤x≤y≤r),能够满足a[x]^a[x+1]^…^a[y]=k的x,y有多少组。

Input

输入文件第一行,为3个整数n,m,k。
第二行为空格分开的n个整数,即ai,a2,….an。
接下来m行,每行两个整数lj,rj,表示一次查询。
1≤n,m≤105,O≤k,ai≤105,1≤lj≤rj≤n

Output

输出文件共m行,对应每个查询的计算结果。

Sample Input

4 5 1
1 2 3 1
1 4
1 3
2 3
2 4
4 4

Sample Output

4
2
1
2
1

分析:
把异或求前缀异或,然后莫队,维护一个桶,加上一个$x$ 答案就加上桶里$x\;xor\;k$的值,减去一个数同理。
 
代码:
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <math.h>
using namespace std;
#define N 100050
typedef long long ll;
ll ans[N],now;
int n,a[N],m,k,h[2000050],pos[N],s[N],size,block,L[N],R[N];
struct A {
int id,l,r;
}q[N];
bool cmp(const A &x,const A &y) {
if(pos[x.l]==pos[y.l]) return x.r<y.r;
return pos[x.l]<pos[y.l];
}
void del(int x) {
h[x]--;
now-=h[x^k];
}
void add(int x) {
now+=h[x^k];
h[x]++;
}
void solve() {
int l=0,r=-1,i;
for(i=1;i<=m;i++) {
while(l<q[i].l) del(s[l]),l++;
while(r>q[i].r) del(s[r]),r--;
while(l>q[i].l) l--,add(s[l]);
while(r<q[i].r) r++,add(s[r]);
ans[q[i].id]=now;
}
}
int main() {
scanf("%d%d%d",&n,&m,&k);
int i,j;
size=sqrt(n); block=n/size;
pos[0]=1;
for(i=1;i<=block;i++) {
L[i]=R[i-1]+1; R[i]=size*i;
for(j=L[i];j<=R[i];j++) {
pos[j]=i;
}
}
if(R[block]!=n) {
block++; for(i=R[block-1];i<=n;i++) pos[i]=block;
}
for(i=1;i<=n;i++) scanf("%d",&a[i]),s[i]=s[i-1]^a[i];
for(i=1;i<=m;i++) {
scanf("%d%d",&q[i].l,&q[i].r); q[i].l--;
q[i].id=i;
}
sort(q+1,q+m+1,cmp);
solve();
for(i=1;i<=m;i++) printf("%lld\n",ans[i]);
}
/*
50 2 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17 35
3 35
*/

BZOJ_5301_[Cqoi2018]异或序列&&CF617E_莫队的更多相关文章

  1. BZOJ5301: [Cqoi2018]异或序列(莫队)

    5301: [Cqoi2018]异或序列 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 400  Solved: 291[Submit][Status ...

  2. [bzoj5301][Cqoi2018]异或序列_莫队

    异或序列 bzoj-5301 Cqoi-2018 题目大意:题目链接. 注释:略. 想法: 由于a^a=0这个性质,我们将所有的数变成异或前缀和. 所求就变成了求所有的$l_i\le x<y\l ...

  3. 洛谷P4462 [CQOI2018]异或序列(莫队)

    打广告->[这里](https://www.cnblogs.com/bztMinamoto/p/9538115.html) 我蠢了…… 如果$a_{l} xor ...a_{r}=k$,那么只要 ...

  4. BZOJ5301 [Cqoi2018]异或序列 【莫队】

    题目链接 BZOJ5301 题解 莫队水题 BZOJ400AC纪念 #include<algorithm> #include<iostream> #include<cst ...

  5. 【BZOJ5301】【CQOI2018】异或序列(莫队)

    [BZOJ5301][CQOI2018]异或序列(莫队) 题面 BZOJ 洛谷 Description 已知一个长度为 n 的整数数列 a[1],a[2],-,a[n] ,给定查询参数 l.r ,问在 ...

  6. 【Luogu】P4462异或序列(莫队)

    题目链接 观察什么时候x到y之间那一段可以被统计 xorsum[x-1]^xorsum[y]=k xorsum[x-1]=xorsum[y]^k||xorsum[y]=xorsum[x-1]^k 莫队 ...

  7. bzoj 5301 [Cqoi2018]异或序列 莫队

    5301: [Cqoi2018]异或序列 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 204  Solved: 155[Submit][Status ...

  8. bzoj 5301: [Cqoi2018]异或序列 (莫队算法)

    链接:https://www.lydsy.com/JudgeOnline/problem.php?id=5301 题面; 5301: [Cqoi2018]异或序列 Time Limit: 10 Sec ...

  9. 「luogu4462」[CQOI2018] 异或序列

    「luogu4462」[CQOI2018]异或序列 一句话题意 输入 \(n\) 个数,给定\(k\),共 \(m\) 组询问,输出第 \(i\) 组询问 \(l_i\) \(r_i\) 中有多少个连 ...

随机推荐

  1. LindDotNetCore~框架介绍及特色功能(有点springboot的意思)

    LindDotNetCore模块介绍 大叔博客 LindDotNetCore相关模块介绍 [x] 全局都是依赖DI [x] 消息队列 [x] NoSql [x] Caching [x] 仓储 [x] ...

  2. Visual Studio Community 2013,功能完整,免费使用

    http://www.infoq.com/cn/news/2014/11/VSC2013 微软刚刚宣布了.NET平台的开源计划,与此同时,它还推出了源自Visual Studio Profession ...

  3. txtbook简单HTML可读化改造

    一般来讲下载的txtbook在notepad或者之类的文本编辑器下的阅读体验不是很好,PC上面专门装个txt阅读器好像有点杀鸡用牛刀,可以用HTML简单处理一下就可以放在浏览器下爽快的阅读了,这个操作 ...

  4. 关于Python的那些话

    1.第一个选择:版本2还是3,我选择2,保守谨慎,3的成熟周期会很长2.三种基本的文本操作:     2.1.解析数据并将数据反序列化到程序的数据结构中     2.2.将数据以某种方式转化为另一种相 ...

  5. activeMq的入门程序

    生产者 1.导入相关依赖 2.交给Spring管理,写入相关配置JmsTemplate @RunWith(SpringJUnit4ClassRunner.class) @ContextConfigur ...

  6. 哈夫曼树【最优二叉树】【Huffman】

    [转载]只为让价值共享,如有侵权敬请见谅! 一.哈夫曼树的概念和定义 什么是哈夫曼树? 让我们先举一个例子. 判定树:         在很多问题的处理过程中,需要进行大量的条件判断,这些判断结构的设 ...

  7. “蝉原则”与CSS3随机多背景随机圆角等效果

    一.什么是“蝉原则”? “蝉原则”,英文称作“cicada principle”,是一种让事物的重复出现符合“自然随机性”的规则,为什么这么说呢? “蝉原则”源自于北美,中国似乎并未有这样的说法,这背 ...

  8. 关于cannot find module 'xxxx’的一个可能解决方法。

    关于cannot find module 'xxxx'的一个可能解决方法. 由于学习angular2,想单独学习一下typescript下angular2使用的'rxjs'是怎么使用的,我用npm自己 ...

  9. js中几种实用的跨域方法原理详解【转】

    源地址:http://www.cnblogs.com/2050/p/3191744.html 这里说的js跨域是指通过js在不同的域之间进行数据传输或通信,比如用ajax向一个不同的域请求数据,或者通 ...

  10. javascript 用函数语句和表达式定义函数的区别详解

    通常我们会看到以下两种定义函数的方式: // 函数语句 function fn(str) { console.log(str); }; // 表达式定义 var fnx=function(str) { ...