upc组队赛2 Master of GCD 【线段树区间更新 || 差分】
Master of GCD
题目描述
Hakase has n numbers in a line. At fi rst, they are all equal to 1. Besides, Hakase is interested in primes. She will choose a continuous subsequence [l, r] and a prime parameter x each time and for every l≤i≤r, she will change ai into ai*x. To simplify the problem, x will be 2 or 3. After m operations, Hakase wants to know what is the greatest common divisor of all the numbers.
输入
The first line contains an integer T (1≤T≤10) representing the number of test cases.
For each test case, the fi rst line contains two integers n (1≤n≤100000) and m (1≤m≤100000),where n refers to the length of the whole sequence and m means there are m operations.
The following m lines, each line contains three integers li (1≤li≤n), ri (1≤ri≤n), xi (xi∈{2,3} ),which are referred above.
输出
For each test case, print an integer in one line, representing the greatest common divisor of the sequence. Due to the answer might be very large, print the answer modulo 998244353.
样例输入
2
5 3
1 3 2
3 5 2
1 5 3
6 3
1 2 2
5 6 2
1 6 2
样例输出
6
2
提示
For the first test case, after all operations, the numbers will be [6,6,12,6,6]. So the greatest common divisor is 6.
题解
只需要求出【1,n】中乘2 和 乘3的最少次数
比赛的时候写的线段树 结束了学弟说用差分可以很快解决,给跪了orz
差分代码
#include<bits/stdc++.h>
using namespace std;
#define rep(i,a,n) for(int i=a;i<n;i++)
#define memset(x,y) memset(x,y,sizeof(x))
#define memcpy(x,y) memcpy(x,y,sizeof(y))
#define all(x) x.begin(),x.end()
#define readc(x) scanf("%c",&x)
#define read(x) scanf("%d",&x)
#define read2(x,y) scanf("%d%d",&x,&y)
#define read3(x,y,z) scanf("%d%d%d",&x,&y,&z)
#define print(x) printf("%d\n",x)
#define lowbit(x) x&-x
#define lson(x) x<<1
#define rson(x) x<<1|1
#define pb push_back
#define mp make_pair
typedef pair<int,int> P;
typedef long long LL;
typedef long long ll;
const double eps=1e-8;
const double PI = acos(1.0);
const int INF = 0x3f3f3f3f;
const int inf = 0x3f3f3f3f;
const int MOD = 1e9+7;
const ll mod = 998244353;
const int MAXN = 1e6+7;
const int maxm = 1;
const int maxn = 100000+10;
int T;
int n,m;
int a,b,x;
int cnt2[maxn],cnt3[maxn];
int tot2[maxn],tot3[maxn];
int main(){
read(T);
while(T--){
memset(cnt2,0);
memset(cnt3,0);
memset(tot2,0);
memset(tot3,0);
read2(n,m) ;
while(m--){
read3(a,b,x);
if(x == 2) {
cnt2[a]++,cnt2[b+1]--;
}
else {
cnt3[a]++,cnt3[b+1]--;
}
}
int min2,min3;
min2 = min3 = inf;
for(int i = 1; i<= n ;i ++){
tot2[i] = tot2[i-1] + cnt2[i];
tot3[i] = tot3[i-1] + cnt3[i];
min2 = min(min2,tot2[i]);
min3 = min(min3,tot3[i]);
}
ll ans = 1;
for(int i = 0 ; i < min2 ;i ++){
ans = ans * 2 % mod;
}
for(int i = 0 ; i < min3 ;i ++){
ans = ans * 3 % mod;
}
cout << ans <<endl;
}
}
线段树代码
#include<bits/stdc++.h>
using namespace std;
#define rep(i,a,n) for(int i=a;i<n;i++)
#define memset(x,y) memset(x,y,sizeof(x))
#define memcpy(x,y) memcpy(x,y,sizeof(y))
#define all(x) x.begin(),x.end()
#define readc(x) scanf("%c",&x)
#define read(x) scanf("%d",&x)
#define read2(x,y) scanf("%d%d",&x,&y)
#define read3(x,y,z) scanf("%d%d%d",&x,&y,&z)
#define print(x) printf("%d\n",x)
#define lowbit(x) x&-x
#define lson(x) x<<1
#define rson(x) x<<1|1
#define pb push_back
#define mp make_pair
typedef pair<int,int> P;
typedef long long LL;
typedef long long ll;
const double eps=1e-8;
const double PI = acos(1.0);
const int INF = 0x3f3f3f3f;
const int inf = 0x3f3f3f3f;
const int MOD = 1e9+7;
const ll mod = 998244353;
const int MAXN = 1e6+7;
const int maxm = 1;
const int maxn = 100000+10;
int T;
int n,m;
struct node {
ll l, r;
int lazy2,lazy3;
ll t;
ll cnt2,cnt3;
}tree[maxn << 2];
int a,b,x;
void pushup(int k){
tree[k].cnt2 = min(tree[k<<1].cnt2,tree[k<<1|1].cnt2);
tree[k].cnt3 = min(tree[k<<1].cnt3,tree[k<<1|1].cnt3);
}
void pushdown(int k)
{
if(tree[k].lazy2)
{
tree[k<<1].cnt2 += tree[k].lazy2;
tree[k<<1|1].cnt2 += tree[k].lazy2;
tree[k<<1].lazy2 += tree[k].lazy2;
tree[k<<1|1].lazy2 += tree[k].lazy2;
tree[k].lazy2 = 0;
}
if(tree[k].lazy3)
{
tree[k<<1].cnt3 += tree[k].lazy3;
tree[k<<1|1].cnt3 += tree[k].lazy3;;
tree[k<<1].lazy3 += tree[k].lazy3;
tree[k<<1|1].lazy3 += tree[k].lazy3;
tree[k].lazy3 = 0;
}
}
void build(int l,int r,int k){
tree[k].l = l;
tree[k].r = r;
tree[k].lazy2 = 0;
tree[k].lazy3 = 0;
tree[k].cnt2 = 0;
tree[k].cnt3 = 0;
if(l == r){
// tree[k].t = 1 ;
return ;
}
int mid = (r + l) >> 1 ;
build(l, mid, k << 1);
build(mid + 1,r , k << 1|1);
pushup(k);
}
void updata(int a,int b,int k,int x){
if(tree[k].l == tree[k].r)
{
if(x == 2)
tree[k].cnt2 ++;
if(x == 3)
tree[k].cnt3 ++;
return ;
}
if(a <= tree[k].l && b >= tree[k].r )
{
if(x == 2){
tree[k].cnt2 ++;
tree[k].lazy2 ++;
}
if(x == 3){
tree[k].cnt3 ++;
tree[k].lazy3 ++;
}
return ;
}
pushdown(k);
int mid = (tree[k].l + tree[k].r) >> 1;
if(a <= mid){
updata(a,b,k<<1,x);
}
if(b > mid){
updata(a,b,k<<1|1,x);
}
pushup(k);
}
int main(){
read(T);
while(T--){
read2(n,m);
build(1,n,1);
while(m--){
read3(a,b,x);
updata(a,b,1,x);
}
ll ans = 1;
for(int i = 0 ; i < tree[1].cnt2 ;i ++){
ans = ans * 2 % mod;
}
for(int i = 0 ; i < tree[1].cnt3 ;i ++){
ans = ans * 3 % mod;
}
printf("%lld\n",ans % mod);
}
}
upc组队赛2 Master of GCD 【线段树区间更新 || 差分】的更多相关文章
- Master of GCD 【线段树区间更新 || 差分】
Master of GCD 时间限制: 1 Sec 内存限制: 128 MB 提交: 670 解决: 112 [提交] [状态] [命题人:admin] 题目描述 Hakase has n num ...
- HDU 4902 Nice boat 2014杭电多校训练赛第四场F题(线段树区间更新)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4902 解题报告:输入一个序列,然后有q次操作,操作有两种,第一种是把区间 (l,r) 变成x,第二种是 ...
- HDU 1556 Color the ball(线段树区间更新)
Color the ball 我真的该认真的复习一下以前没懂的知识了,今天看了一下线段树,以前只会用模板,现在看懂了之后,发现还有这么多巧妙的地方,好厉害啊 所以就应该尽量搞懂 弄明白每个知识点 [题 ...
- hihoCoder 1080 : 更为复杂的买卖房屋姿势 线段树区间更新
#1080 : 更为复杂的买卖房屋姿势 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Hi和小Ho都是游戏迷,“模拟都市”是他们非常喜欢的一个游戏,在这个游戏里面他们 ...
- HDU 5023 A Corrupt Mayor's Performance Art(线段树区间更新)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5023 解题报告:一面墙长度为n,有N个单元,每个单元编号从1到n,墙的初始的颜色是2,一共有30种颜色 ...
- HDU 1698 线段树 区间更新求和
一开始这条链子全都是1 #include<stdio.h> #include<string.h> #include<algorithm> #include<m ...
- POJ-2528 Mayor's posters (线段树区间更新+离散化)
题目分析:线段树区间更新+离散化 代码如下: # include<iostream> # include<cstdio> # include<queue> # in ...
- ZOJ 1610 Count the Colors (线段树区间更新)
题目链接 题意 : 一根木棍,长8000,然后分别在不同的区间涂上不同的颜色,问你最后能够看到多少颜色,然后每个颜色有多少段,颜色大小从头到尾输出. 思路 :线段树区间更新一下,然后标记一下,最后从头 ...
- POJ 2528 Mayor's posters (线段树区间更新+离散化)
题目链接:http://poj.org/problem?id=2528 给你n块木板,每块木板有起始和终点,按顺序放置,问最终能看到几块木板. 很明显的线段树区间更新问题,每次放置木板就更新区间里的值 ...
随机推荐
- CentOS 7.0 lamp
CentOS 7.0默认使用的是firewall作为防火墙,这里改为iptables防火墙. 1.关闭firewall: systemctl stop firewalld.service #停止fir ...
- 优化问题及KKT条件
整理自其他优秀博文及自己理解. 目录 无约束优化 等式约束 不等式约束(KKT条件) 1.无约束优化 无约束优化问题即高数下册中的 “多元函数的极值" 部分. 驻点:所有偏导数皆为0的点: ...
- thymeleaf数组下标
<tr th:if="${exercisers != null}"th:each="exerciser:${exercisers}"> <td ...
- 数据库(一)—— MySQL介绍
目录 MySQL介绍 一.MySQL版本 1.mysql主流版本 2.版本选择 二.MySQL连接与实例 1.MySQL的C/S结构 2.MySQL实例 三.mysql三层结构 1.连接层(连接上数据 ...
- php被遗忘的参数 pcntl
phpinfo () CTRL+ F–enable-pcntl今天居然可以用到.哈 狗屎运. 来自t00ls < ?php /******************************* *查 ...
- selinux与kernel 0day
selinux与kernel 0day kernel NULL pointer的利用需要把shellcode映射到内存0处, 大家在测试exp的时候,总能发现一个规律, 开着selinux就能溢出成功 ...
- CF1223D
CF1223D 不需要动的一定值域连续 #include<iostream> #include<cstring> #include<cstdio> #include ...
- Neo4j高级应用技术专题系列 - APOC存储过程库-【1】概述
Neo4j高级应用技术专题系列 - APOC存储过程库-[1]概述 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://bl ...
- React-native 关于键盘遮挡界面问题
//引入 KeyboardAvoidingView import { KeyboardAvoidingView } from 'react-native'; //使用 KeyboardAvoiding ...
- JS鼠标提示框效果
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...