POJ 2186 挑战 --牛红人 强连通分量——Tarjan
题意:n头奶牛,给出若干个欢迎关系a b,表示a欢迎b,欢迎关系是单向的,但是是可以传递的,如:a欢迎b,b欢迎c,那么a欢迎c 。另外每个奶牛都是欢迎他自己的。求出被所有的奶牛欢迎的奶牛的数目.#include <iostream>#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <vector>
#include <queue>
#include <stack>
#include <map>
#include <algorithm>
#include <set>
using namespace std;
typedef long long ll;
typedef unsigned long long Ull;
#define MM(a,b) memset(a,b,sizeof(a));
const double eps = 1e-10;
const int inf =0x7f7f7f7f;
const double pi=acos(-1);
const int maxn=10000; vector<int> G[maxn+10];
int n,m,deg[maxn+10],pre[maxn+10],dfs_clock,scc_cnt,sccno[maxn+10],lowlink[maxn+10];
stack<int> S; void tarjan(int u)
{
pre[u]=lowlink[u]=++dfs_clock;
S.push(u);
for(int i=0;i<G[u].size();i++)
{
int v=G[u][i];
if(!pre[v])
{
tarjan(v);
lowlink[u]=min(lowlink[u],lowlink[v]);
}
else if(!sccno[v])
lowlink[u]=min(lowlink[u],pre[v]);
} if(lowlink[u]==pre[u])
{
scc_cnt++;
while(1)
{
int x=S.top();S.pop();
sccno[x]=scc_cnt;
if(x==u) break;//找到了当前强连通的起始节点就退出,
//不然会破坏其他强连通分量
}
}
} void find_scc()
{
MM(pre,0);MM(sccno,0);
scc_cnt=dfs_clock=0;
for(int i=1;i<=n;i++)
if(!pre[i])
tarjan(i);
} int main()
{
while(~scanf("%d %d",&n,&m))
{
for(int i=1;i<=n;i++)
G[i].clear(); for(int i=1;i<=m;i++)
{
int u,v;
scanf("%d %d",&u,&v);
G[u].push_back(v);
} find_scc(); MM(deg,0);
for(int u=1;u<=n;u++)
for(int j=0;j<G[u].size();j++)
{
int v=G[u][j];
if(sccno[u]!=sccno[v])
deg[sccno[u]]=1;
} int cnt=0,ans=0;
for(int i=1;i<=scc_cnt;i++)
if(!deg[i])
cnt++; if(cnt==1)
{
for(int i=1;i<=n;i++)
if(!deg[sccno[i]])
ans++;
}
printf("%d\n",ans);
}
return 0;
}
分析:强连通分量裸题,缩点成DAG后,只要求出出度为0的强连通就好,若不止1个,则说明不存在
被所有牛都视为红人的强连通存在;否则直接输出出度为0的强连通的牛的个数
POJ 2186 挑战 --牛红人 强连通分量——Tarjan的更多相关文章
- poj 2186 Popular Cows 【强连通分量Tarjan算法 + 树问题】
题目地址:http://poj.org/problem?id=2186 Popular Cows Time Limit: 2000MS Memory Limit: 65536K Total Sub ...
- poj 2186 "Popular Cows"(强连通分量入门题)
传送门 参考资料: [1]:挑战程序设计竞赛 题意: 每头牛都想成为牛群中的红人. 给定N头牛的牛群和M个有序对(A, B),(A, B)表示牛A认为牛B是红人: 该关系具有传递性,所以如果牛A认为牛 ...
- POJ 2186 Popular Cows(强连通分量Kosaraju)
http://poj.org/problem?id=2186 题意: 一个有向图,求出点的个数(任意点可达). 思路: Kosaraju算法的第一次dfs是后序遍历,而第二次遍历时遍历它的反向图,从标 ...
- POJ 2186 Popular Cows(强连通分量)
[题目链接] http://poj.org/problem?id=2186 [题目大意] 给出一张有向图,问能被所有点到达的点的数量 [题解] 我们发现能成为答案的,只有拓扑序最后的SCC中的所有点, ...
- POJ 3678 Katu Puzzle 2-SAT 强连通分量 tarjan
http://poj.org/problem?id=3678 给m条连接两个点的边,每条边有一个权值0或1,有一个运算方式and.or或xor,要求和这条边相连的两个点经过边上的运算后的结果是边的权值 ...
- 强连通分量(tarjan求强连通分量)
双DFS方法就是正dfs扫一遍,然后将边反向dfs扫一遍.<挑战程序设计>上有说明. 双dfs代码: #include <iostream> #include <cstd ...
- POJ 1236 Network of Schools(强连通分量/Tarjan缩点)
传送门 Description A number of schools are connected to a computer network. Agreements have been develo ...
- POJ 2186 Popular Cows(强联通分量)
题目链接:http://poj.org/problem?id=2186 题目大意: 每一头牛的愿望就是变成一头最受欢迎的牛.现在有N头牛,给你M对整数(A,B),表示牛A认为牛B受欢迎. 这 种 ...
- 强连通分量tarjan缩点——POJ2186 Popular Cows
这里的Tarjan是基于DFS,用于求有向图的强联通分量. 运用了一个点dfn时间戳和low的关系巧妙地判断出一个强联通分量,从而实现一次DFS即可求出所有的强联通分量. §有向图中, u可达v不一定 ...
随机推荐
- lua基础学习(一)
设计目的: 为了嵌入应用程序中,从而为应用程序提供灵活的扩展和定制功能. 特性: 1.编译之后仅仅100k,可以很方便嵌入别的程序里. 2.可扩张性,Lua提供了非常易于使用的扩展接口和机制:由宿 ...
- MSF魔鬼训练营-3.1.2信息收集-通过搜索引擎进行信息搜集
1.Google hacking 技术 自动化的Google搜索工具 SiteDigger https://www.mcafee.com/us/downloads/free-tools/sitedig ...
- java中的多态关系的运用
1.多态发生的三个必备条件 继承.重写.父类引用指向子类对象 2.注意 当使用多态方式调用方法时,首先检查父类中是否有该方法,如果没有,则编译错误:如果有,再去调用子类的同名方法. 方法的重写,也就是 ...
- 【7.10校内test】T2不等数列
[题目链接luogu] 此题在luogu上模数是2015,考试题的模数是2012. 然后这道题听说好多人是打表找规律的(就像7.9T2一样)(手动滑稽_gc) 另外手动 sy,每次测试都无意之间bib ...
- POJ 3585 Accumulation Degree 题解
题面 一句话题意:找一个点使得,使得从这个点出发作为源点,发出的流量最大,输出这个最大的流量 这道题是换根法+二次扫描的模板: 首先若确定1为原点,那么可以写出dp方程:当v的度是1时, g[u]+= ...
- Luogu P1948 [USACO08JAN]Telephone Lines
题目 两眼题 二分一个\(lim\),然后跑最短路(边权\(\le lim\)的边长度为\(0\),\(>lim\)的长度为\(1\)),然后判断\(dis_{1,n}\le k\). #inc ...
- html中的锚点设置
html中的锚点 一.页面内跳转的锚点设置 页面内的跳转需要两步: 方法一: ①:设置一个锚点链接去找喵星人:(注意:href属性的属性值最前面要加#) ②:在页面中需要的位置设置锚点<a na ...
- python中魔法方法__str__与__repr__的区别
提出问题 当我们自定义一个类时,打印这个类对象或者在交互模式下直接输入这个类对象按回车,默认显示出来的信息好像用处不大.如下所示 In [1]: class People: ...: def __in ...
- Python程序结构(sys、os)
一.Python组成结构 Python程序一般由包package.模块moudle.函数function组成.具体关系如下图:
- java实现spark常用算子之countbykey
import org.apache.spark.SparkConf;import org.apache.spark.api.java.JavaPairRDD;import org.apache.spa ...