1. 概率

1.1 定义:概率(Probability):对一件事情发生的可能性的衡量。

1.2 范围:0 <= P <= 1

1.3 计算方法:

1.3.1 根据个人置信

1.3.2 根据历史数据

1.3.3 根据模拟数据

1.4 条件概率:

2. Logistic Regression(逻辑回归)

2.1 列子:模拟癌症肿瘤是良性还是恶性

h(x) > 0.5

h(x) > 0.2

2.2 基本模型

测试数据为:

要学习的参数为:

向量表示:

由于y取值在[0,1]之间,所有需要处理二值数据,引入Sigmoid函数来使得曲线平滑化

预测函数:

用概率表示:

正例(y = 1):

反例(y = 0):

2.3 Cost函数

线性回归:

(预测值-实例值)

(类似于线性模型)

在简单线性模型中找到合适的使得上式最小

Logistic regression:

Cost函数:

上式合并可以得到下面的式子

目标:找到合适的使得上式最小

2.4 解法:梯度下降法(gradient decent)

为学习率

更新法则:

为学习率

同时对所有的进行更新,重复更新知道收敛

# -*- coding:utf-8 -*-

import numpy as np
import random #产生模拟数据 numPoints实例个数 bias偏好值 variance方差
def genData(numPoints, bias, variance):
x = np.zeros(shape=(numPoints, 2))
y = np.zeros(shape=(numPoints)) #1行 如:1x100
for i in range(0, numPoints):#每一行循环
x[i][0] = 0 #每行第一列等于1
x[i][1] = i #每行第二列等于i
y[i] = (i + bias) + random.uniform(0, 1) + variance
return x,y #梯度下降
def gradientDescent(x, y, theta, alpha, m, numIterations): #alpha学习率 m实例个数 numIterations更新次数
xTran = np.transpose(x)#转置
for i in range(numIterations):
hypothesis = np.dot(x, theta)#估计值
loss = hypothesis - y#估计值-实际值
cost = np.sum(loss**2)/(2*m)#这里的定义最简单的cost函数和实际定义有出入
gradient = np.dot(xTran,loss)/m#更新量
theta = theta - alpha*gradient
print("Iteration %d | cost: %f" %(i, cost))
return theta #测试
x, y = genData(100, 25, 10)
# print("x:")
# print(x)
# print("y:")
# print(y)
#
m, n = np.shape(x)
n_y = np.shape(y)
#
# print("x_shape:" ,str(m)," ",str(n))
# print("y_shape:" , str(n_y)) numIterations = 100000
alpha = 0.0005
theta = np.ones(n)
theta = gradientDescent(x, y, theta, alpha, m, numIterations)
print(theta)

  

机器学习-非线性回归(Logistic Regression)及应用的更多相关文章

  1. 【机器学习】Logistic Regression 的前世今生(理论篇)

    Logistic Regression 的前世今生(理论篇) 本博客仅为作者记录笔记之用,不免有非常多细节不正确之处. 还望各位看官能够见谅,欢迎批评指正. 博客虽水,然亦博主之苦劳也. 如需转载,请 ...

  2. Python机器学习笔记 Logistic Regression

    Logistic回归公式推导和代码实现 1,引言 logistic回归是机器学习中最常用最经典的分类方法之一,有人称之为逻辑回归或者逻辑斯蒂回归.虽然他称为回归模型,但是却处理的是分类问题,这主要是因 ...

  3. 【模式识别与机器学习】——logistic regression

    虽然叫做“回归”,但是这个算法是用来解决分类问题的.回归与分类的区别在于:回归所预测的目标量的取值是连续的(例如房屋的价格):而分类所预测的目标变量的取值是离散的(例如判断邮件是否为垃圾邮件).当然, ...

  4. 在opencv3中实现机器学习之:利用逻辑斯谛回归(logistic regression)分类

    logistic regression,注意这个单词logistic ,并不是逻辑(logic)的意思,音译过来应该是逻辑斯谛回归,或者直接叫logistic回归,并不是什么逻辑回归.大部分人都叫成逻 ...

  5. Stanford机器学习---第三讲. 逻辑回归和过拟合问题的解决 logistic Regression & Regularization

    原文:http://blog.csdn.net/abcjennifer/article/details/7716281 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...

  6. 机器学习总结之逻辑回归Logistic Regression

    机器学习总结之逻辑回归Logistic Regression 逻辑回归logistic regression,虽然名字是回归,但是实际上它是处理分类问题的算法.简单的说回归问题和分类问题如下: 回归问 ...

  7. 机器学习入门11 - 逻辑回归 (Logistic Regression)

    原文链接:https://developers.google.com/machine-learning/crash-course/logistic-regression/ 逻辑回归会生成一个介于 0 ...

  8. 李宏毅机器学习笔记3:Classification、Logistic Regression

    李宏毅老师的机器学习课程和吴恩达老师的机器学习课程都是都是ML和DL非常好的入门资料,在YouTube.网易云课堂.B站都能观看到相应的课程视频,接下来这一系列的博客我都将记录老师上课的笔记以及自己对 ...

  9. 【机器学习】逻辑回归(Logistic Regression)

    注:最近开始学习<人工智能>选修课,老师提纲挈领的介绍了一番,听完课只了解了个大概,剩下的细节只能自己继续摸索. 从本质上讲:机器学习就是一个模型对外界的刺激(训练样本)做出反应,趋利避害 ...

随机推荐

  1. Java常考面试题整理(二)

    21.Iterator和ListIterator的区别是什么? 参考答案: 下面列出了他们的区别: Iterator可以用来遍历Set和List集合,但是ListIterator只能用来遍历List. ...

  2. kotlin 冷知识 *号 展开数组

    Kotlin笔记-冷门知识点星号(*) 2019年05月10日 11:37:00 weixin_33724059 阅读数 6   可变参数展开操作符 在数组对象前加*号可以将数组展开,方便传值,比如: ...

  3. 【学习】mysql 时间戳与日期格式的相互转换

    1.UNIX时间戳转换为日期用函数: FROM_UNIXTIME() ); 输出:2006-08-22 12:11:10 2.日期转换为UNIX时间戳用函数: UNIX_TIMESTAMP() Sel ...

  4. MyOD C语言代码实现

    Myod C语言实现 一.题目要求 1 复习c文件处理内容 2 编写myod.c 用myod XXX实现Linux下od -tx -tc XXX的功能 main与其他分开,制作静态库和动态库 编写Ma ...

  5. php面向对象 2

    继承概念:如果一个类有子类,那么该子类会继承父类的一切东西(私有成员访问不到)在定义子类的时候需要加一个关键字:extends特点:单继承,一个类只能有一个父类如果父类中有构造函数,子类在实例化的时候 ...

  6. MobileNetV2: Inverted Residuals and Linear Bottlenecks

    1. 摘要 作者提出了一个新的网络架构 MobileNetV2,该架构基于反转残差结构,其中的跳跃连接位于较瘦的瓶颈层之间.中间的扩展层则利用轻量级的深度卷积来提取特征引入非线性,而且,为了维持网络的 ...

  7. 【转】How-to: Enable User Authentication and Authorization in Apache HBase

    With the default Apache HBase configuration, everyone is allowed to read from and write to all table ...

  8. ubuntu分区建议总结

    本文为转载别人的内容,结合了其他内容,进行分区的总结.其中主要是分区表格,对于ubuntu安装时,进行分区非常有用. 无论是安装Windows还是Linux操作系统,硬盘分区都是整个系统安装过程中最为 ...

  9. 【VS开发】免费打工仔:一个完善的ActiveX Web控件教程

    作者 David Marcionek. 翻译 免费打工仔 这个教程可以帮助你快速开发一个ActiveX控件.其中将要讲解关于ActiveX开发的一些基础概念,诸如方法(method).属性(prope ...

  10. 思考--mysql 分库分表的思考

    查询不在分库键上怎么办,扫描所有库?由于分库了,每个库扫描很快?所以比单个表的扫描肯定快,可以这样理解吗. 多表jion怎么弄,把内层表发给每个分库吗? citus,tidb 都有这些问题,citus ...