Counting Divisors

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Others)
Total Submission(s): 2599    Accepted Submission(s): 959

Problem Description
In mathematics, the function d(n) denotes the number of divisors of positive integer n.

For example, d(12)=6 because 1,2,3,4,6,12 are all 12's divisors.

In this problem, given l,r and k, your task is to calculate the following thing :

 
Input
The first line of the input contains an integer T(1≤T≤15), denoting the number of test cases.

In each test case, there are 3 integers l,r,k(1≤l≤r≤1012,r−l≤106,1≤k≤107).

 
Output
For each test case, print a single line containing an integer, denoting the answer.
 
Sample Input
3
1 5 1
1 10 2
1 100 3
 
Sample Output
10
48
2302
 
题目大意:d(i)是 i 的因数个数,让我们求 l<=i<=r 时,d(i^k)之和.
思路:对一个数n=p1t1*p2t2*...*pntn, pi是n的质因数。则n的因数个数是(t1+1)*(t2+1)*...*(tn-1+1)*(tn+1), 易得i^k的因数个数是(k*t1+1)*(k*t2+1)*...*(k*tn+1),那么接下来就是要对 i 进行质因数分解了。 在打表打出质因数后,分解时对于一个质数P, 在[l , r]区间内所有能整除P的数进行质因数分解,这样能保证不会有多余时间花在搜索质因数上,这种做法类似筛法。具体见代码。
 
AC代码(标程):
 #include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<stdio.h>
#define it (p-l)
using namespace std;
typedef long long LL;
const LL MOD=;
const long long MAXN=;
long long prime[MAXN],tot=;
bool isPrime[MAXN];
LL k,num[MAXN],res[MAXN];
void getprime(){
memset(isPrime, true, sizeof(isPrime));
for(int i=;i<MAXN;i++){
if(isPrime[i]){
prime[++tot]=i;
}
for(int j=;j<=tot;j++){
if(i*prime[j]>MAXN) break;
isPrime[i*prime[j]]=false;
if(i%prime[j]==) break;
}
}
return ;
}
LL cal(LL l, LL r)
{
LL ans=,tmp,cnt;
for(int i=;i<=tot;i++)
{
LL p=(l+prime[i]-)/prime[i]*prime[i];
while(p<=r){
cnt=;
while(num[it]%prime[i]==){
num[it]/=prime[i];
cnt++;
}
res[it]=res[it]*(k*cnt+)%MOD;
p+=prime[i];
}
}
for(LL p=l;p<=r;p++){
if(num[it]==)
ans+=res[it];
else
ans+=res[it]*(k+);
ans%=MOD;
}
return ans;
}
int main()
{
int T;
LL l,r;
getprime();
scanf("%d", &T);
while(T--)
{
scanf("%lld %lld %lld", &l, &r, &k);
for(LL p=l;p<=r;p++){
res[it]=;
num[it]=p;
}
LL res=cal(l, r);
printf("%lld\n", res);
}
}

HDU 6069 Counting Divisors —— 2017 Multi-University Training 4的更多相关文章

  1. HDU 6069 Counting Divisors(2017 Multi-University Training Contest - Team 4 )

    Output For each test case, print a single line containing an integer, denoting the answer.   Sample ...

  2. HDU 6069 Counting Divisors

    Counting Divisors Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Oth ...

  3. hdu 6069 Counting Divisors(求因子的个数)

    Counting Divisors Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Oth ...

  4. hdu 6069 Counting Divisors 筛法

    Counting Divisors Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Oth ...

  5. HDU 6069 Counting Divisors(唯一分解定理+因子数)

    http://acm.hdu.edu.cn/showproblem.php?pid=6069 题意: 思路: 根据唯一分解定理,$n={a_{1}}^{p1}*{a2_{}}^{p2}...*{a_{ ...

  6. 2017ACM暑期多校联合训练 - Team 4 1003 HDU 6069 Counting Divisors (区间素数筛选+因子数)

    题目链接 Problem Description In mathematics, the function d(n) denotes the number of divisors of positiv ...

  7. HDU 6069 Counting Divisors (素数+筛法)

    题意:给定 l,r,k,让你求,其中 l <= r <= 1e12, r-l <= 1e6, k <= 1e7. 析:首先这个题肯定不能暴力,但是给定的区间较小,可以考虑筛选, ...

  8. HDU 6069 Counting Divisors(区间素数筛法)

    题意:...就题面一句话 思路:比赛一看公式,就想到要用到约数个数定理 约数个数定理就是: 对于一个大于1正整数n可以分解质因数: 则n的正约数的个数就是 对于n^k其实就是每个因子的个数乘了一个K ...

  9. hdu 6069 Counting divisors 公式+区间筛

    比赛的时候把公式扣出来了,,但是没有想到用筛法算公因子,,默默学习一下.. 题解:设n=p1^(c1)p2^{c2}...pm^{cm},n=p​1^​c​1*​​​​p​2​^c​2​​​​...p ...

随机推荐

  1. 《图解设计模式》读书笔记2-1 Template Method模式

    目录 模板方法模式 类图 思想: 模板方法模式 在父类中定义流程,在子类中实现具体的方法. 类图 代码 //抽象类 public abstract class AbstractDisplay { pu ...

  2. 快速测试端口的连通性(HTTP/HTTPS)

    ping 仅限 80 端口,命令中无法指定端口: C:\Users\Administrator>ping kikakika.com 遗失对主机的连接. 正在 Ping kikakika.com ...

  3. Decision Tree Algorithm

    Decision Tree算法的思路是,将原始问题不断递归地细分为子问题,直到子问题直接可获得答案为止.在模型训练的过程中,根据训练集去做树的生长(Grow the tree),生长所有可能的Bran ...

  4. 【python】随机数相关

    http://www.cnblogs.com/yd1227/archive/2011/03/18/1988015.html 该博文写的很详细,备忘. 需要注意的是,写测试脚本的时候,不要将脚本命名成跟 ...

  5. 边界安全 - CDN/DMZ/网络协议

    CDN   工具 - LuManager CDN DMZ 网络协议 - DNS Win7下搭建DNS服务器 - BIND 根域 顶级域(即相关国家域名管理机构的数据库,如中国的CNNIC) com n ...

  6. 找不到/lib/modules/../build文件夹

    :解决了make: *** /lib/modules/3.2.0-4-amd64/build: 没有那个文件或目录的问题,更新一下软件列表,然后sudo apt-get install linux-h ...

  7. Survey Results for Rebecca Murpheys Learning JavaScript Survey

    时间 2016-01-27 05:40:46  Raymond Camden's Blog 原文  http://www.raymondcamden.com/2016/01/25/survey-res ...

  8. Scala面向对象

    面向对象编程OOP: Scala vs Java 都有这三特性 封装:把属性.方法封装到类中 Person: int id, String name, Date birthday.... 需要gett ...

  9. [fw]Linux下tty/pty/pts/ptmx详解

    基本概念: 1> tty(终端设备的统称):tty一词源于Teletypes,或者teletypewriters,原来指的是电传打字机,是通过串行线用打印机键盘通过阅读和发送信息的东西,后来这东 ...

  10. 【JAVA】java编译错误:编码UTF8/GBK的不可映射字符

    环境: win7 cmd窗口编译 javac xx.java时报错 错误显示:错误:编码GBK的不可映射字符 背景: 分析发现是中文字符所在行报错了 查阅相关资料发现,是因为编译器设置为了utf-8, ...