NOIP模拟赛(by hzwer) T2 小奇的序列
【题目背景】
小奇总是在数学课上思考奇怪的问题。
【问题描述】
给定一个长度为 n 的数列,以及 m 次询问,每次给出三个数 l,r 和 P, 询问 (a[l'] + a[l'+1] + ... + a[r']) mod P 的最小值。 其中 l <= l' <= r' <= r。
即模意义下的区间子串和最小值。
【输入格式】
第一行包含两个正整数 n 和 m,表示数列的长度和询问的个数。
第二行为 n 个整数,为 a[1]..a[n]。
接下来 m 行,每行三个数 l,r 和 P,代表一次询问。
【输出格式】
对于每次询问,输出一行一个整数表示要求的结果
【样例输入】
4 2
8 15 9 9
1 3 10
1 4 17
【样例输出】
2
1
【数据范围】
对于 20%的数据 n<=100,m<=100,p<=200
对于 40%的数据 n<=200,m<=1000,p<=500
对于 70%的数据 n<=100000,m<=10000,p<=200
对于 100%的数据 n<=500000,m<=10000,p<=500,1<=a[i]<=10^9
【解析】
这道题第一眼看过去好像没什么思路。从部分分入手吧。
20分:直接暴力枚举每一个区间里的点,然后求最小值即可。
40分:可以使用前缀和优化,然后就可以很快地求一个区间里的和。
70分:假如数据是绝对随机,那么如果一个区间的长度大于p,该区间中一定可以组合出所有区间和%p的余数。其中一定会有余数为0的情况,输出0即可。经过实测,这种方法可以拿90分。
100分:将前缀和改为区间前缀和,那么设i为当前枚举到的点,那么区间[ l , i ]的余数sum[i]=(sum[i-1]+a[i])%p。记vis[i]表示余数为i的情况在前面是否出现过。对于每一个sum[i],我们都枚举比他小的余数(从sum[i]到0,用j表示),如果vis[j]=1,表示有这种情况。假设余数为j的位置为p,那么由模运算的性质可得:区间[ p , i ]的余数为sum[i]-j。(为什么大于sum[i]的不需要?因为这不可能是更优的解)然后,用sum[i]-j去更新答案。由于余数是从大到小枚举的,且j越大sum[i]-j越小,即该区间余数越小,如果当前能够被更新,后面的就不会再对答案造成影响了,直接break即可。最后把vis[sum[i]]设为1。注意,如果当前答案已经为0了,就直接输出(不会再更优了)。另外,不要每次都去清空前缀和数组,只需要把sum[l-1]设为0即可。
【备注】
这道题的正解其实是平衡树,但我并不会这个东西......
【代码】
#include <iostream>
#include <cstdio>
#include <cstring>
#define N 500002
using namespace std;
int n,m,a[N],l,r,p,i,j,k;
long long sum[N];
bool e[];
long long read()
{
char c=getchar();
long long w=;
while(c<''||c>'') c=getchar();
while(c<=''&&c>=''){
w=w*+c-'';
c=getchar();
}
return w;
}
long long min(long long a,long long b)
{
if(a<b) return a;
return b;
}
int main()
{
freopen("seq.in","r",stdin);
freopen("seq.out","w",stdout);
n=read();
m=read();
for(i=;i<=n;i++) a[i]=read();
while(m--){
l=read();
r=read();
p=read();
if(r-l+>p){
cout<<""<<endl;
continue;
}
for(i=;i<=p;i++) e[i]=;
e[]=;
sum[l-]=;
long long ans=<<;
for(i=l;i<=r;i++){
sum[i]=(sum[i-]+a[i])%p;
for(j=sum[i];j>=;j--){
if(e[j]){
ans=min(ans,sum[i]-j);
break;
}
}
if(ans==) break;
e[sum[i]]=;
}
printf("%lld\n",ans);
}
fclose(stdin);
fclose(stdout);
return ;
}
NOIP模拟赛(by hzwer) T2 小奇的序列的更多相关文章
- 2.17NOIP模拟赛(by hzwer) T2 小奇的序列
[题目背景] 小奇总是在数学课上思考奇怪的问题. [问题描述] 给定一个长度为 n 的数列,以及 m 次询问,每次给出三个数 l,r 和 P, 询问 (a[l'] + a[l'+1] + ... + ...
- NOIP模拟赛(by hzwer) T3 小奇回地球
[题目背景] 开学了,小奇在回地球的路上,遇到了一个棘手的问题. [问题描述] 简单来说,它要从标号为 1 的星球到标号为 n 的星球,某一些星球之间有航线. 由于超时空隧道的存在,从一个星球到另一个 ...
- NOIP模拟赛(by hzwer) T1 小奇挖矿
[题目背景] 小奇要开采一些矿物,它驾驶着一台带有钻头(初始能力值 w)的飞船,按既定 路线依次飞过喵星系的 n 个星球. [问题描述] 星球分为 2 类:资源型和维修型. 1. 资源型:含矿物质量 ...
- 2.17NOIP模拟赛(by hzwer) T3 小奇回地球
[题目背景] 开学了,小奇在回地球的路上,遇到了一个棘手的问题. [问题描述] 简单来说,它要从标号为 1 的星球到标号为 n 的星球,某一些星球之间有航线. 由于超时空隧道的存在,从一个星球到另一个 ...
- 2.17NOIP模拟赛(by hzwer) T1 小奇挖矿
[题目背景] 小奇要开采一些矿物,它驾驶着一台带有钻头(初始能力值 w)的飞船,按既定 路线依次飞过喵星系的 n 个星球. [问题描述] 星球分为 2 类:资源型和维修型. 1. 资源型:含矿物质量 ...
- NOIP模拟赛 经营与开发 小奇挖矿
[题目描述] 4X概念体系,是指在PC战略游戏中一种相当普及和成熟的系统概念,得名自4个同样以“EX”为开头的英语单词. eXplore(探索) eXpand(拓张与发展) eXploit(经营与开发 ...
- NOIP模拟赛 by hzwer
2015年10月04日NOIP模拟赛 by hzwer (这是小奇=> 小奇挖矿2(mining) [题目背景] 小奇飞船的钻头开启了无限耐久+精准采集模式!这次它要将原矿运到泛光之源的矿 ...
- 2015-9-13 NOIP模拟赛 by hzwer
好老的题了,但是还是很有做头的. 总结 不吸氧看来确实是没法用stl的啊(set常数太大了,开O2也没过) SPFA没认真学,觉得有堆优化Dijkstra就天下无敌了,今天负边权教我做人 于是苦逼的只 ...
- CH Round #54 - Streaming #5 (NOIP模拟赛Day1)
A.珠 题目:http://ch.ezoj.tk/contest/CH%20Round%20%2354%20-%20Streaming%20%235%20(NOIP模拟赛Day1)/珠 题解:sb题, ...
随机推荐
- Linux_指令杂烩
目录 目录 指令集合 常用于脚本的指令 查看变量的指令 监控命令 除了root用户的其他用户不能login 重定向 grep 过滤文件内容 vim预设定 系统在启动时要依次运行4个脚本 归档压缩文件互 ...
- Jmeter接口测试系列之测试用例变量参数化处理
在进行接口测试时,一组完整的接口测试用例,存在后一个测试用例使用前一个用例的请求结果中的数据,此时就需要参数化测试用例中值.直接使用变量调用会存在问题,此时就需要用到beanshell去改变. 举例说 ...
- Jmeter之查看结果树
在编写接口测试脚本的时候,需要进行调试和查看结果是否正常的情况,这个时候可以使用查看结果树组件进行. 查看结果树中展示了每一个取样器的结果.请求信息和响应信息,可以查看这些内容去分析脚本是否存在问题. ...
- C#正则的使用
c#使用正则表达式要用到System.Text.RegularExprssions命名空间 官方API Regex类是用于匹配表达式: 通常Regex分为静态类和实例化俩种方式.那这俩种有什么区别呢, ...
- 正则表达式——Unicode 属性
每一个 Unicode 字符,除了有 Code Point 与之对应外,还具体其他属性,在正则表达式中常用到三种 Unicode 属性: Unicode Property.Unicode Scri ...
- 操作系统 - Linux操作系统 - Centos - Centos6.5 - 安装|命令|使用汇总
快捷键 打开终端 右键 —>open terminal 网络配置 配置文件修改 - ONBOOT=no 修改为 ONBOOT=yes 工具 - gcc 安装 yum -y install gcc ...
- swagger 访问格式
boot工程格式如下 http://10.166.10.169:8085/swagger-ui.html 非boot工程加个自己项目名 http://10.166.10.169:8085/xxx/sw ...
- 全新一台node节点加入到集群中
目录 前言 对新节点做解析 方法一 hosts 文件解析 方法二 bind 解析 测试 分发密钥对 推送 CA 证书 flanneld 部署 推送flanneld二进制命令 推送flanneld秘钥 ...
- 极*Java速成教程 - (5)
Java语言基础 容器 这个世界是有序的,将Java对象零散地放到内存中是不符合世界常理的,特别是有一大组相似的甚至不知道有多少数据的时候.把Java对象装进盒子里可以有序收纳,这个盒子就叫容器. 初 ...
- 管道(Pipe)----计算机进程间通信
参至他人博客:https://blog.csdn.net/u011583316/article/details/83419805