Spark-PySpark sql各种内置函数
_functions = {
'lit': 'Creates a :class:`Column` of literal value.',
'col': 'Returns a :class:`Column` based on the given column name.'根据给定的列名返回一个:class:`Column`
'column': 'Returns a :class:`Column` based on the given column name.',根据给定的列名返回一个:class:`Column`
'asc': 'Returns a sort expression based on the ascending order of the given column name.',返回基于给定列名的升序的排序表达式
'desc': 'Returns a sort expression based on the descending order of the given column name.',返回基于给定列名的降序的排序表达式
'upper': 'Converts a string expression to upper case.',将字符串表达式转换为大写
'lower': 'Converts a string expression to upper case.',将字符串表达式转换为大写
'sqrt': 'Computes the square root of the specified float value.',计算指定浮点值的平方根
'abs': 'Computes the absolute value.',计算绝对值
'max': 'Aggregate function: returns the maximum value of the expression in a group.',聚合函数:返回组中表达式的最大值
'min': 'Aggregate function: returns the minimum value of the expression in a group.',聚合函数:返回组中表达式的最小值
'count': 'Aggregate function: returns the number of items in a group.',聚合函数:返回组中的项目数
'sum': 'Aggregate function: returns the sum of all values in the expression.',聚合函数:返回表达式中所有值的总和
'avg': 'Aggregate function: returns the average of the values in a group.',聚合函数:返回组中值的平均值
'mean': 'Aggregate function: returns the average of the values in a group.',聚合函数:返回组中值的平均值
'sumDistinct': 'Aggregate function: returns the sum of distinct values in the expression.',聚合函数:返回表达式中不同值的总和
}
_functions_1_4 = {
# unary math functions
'acos': 'Computes the cosine inverse of the given value; the returned angle is in the range' +
'0.0 through pi.',
'asin': 'Computes the sine inverse of the given value; the returned angle is in the range' +
'-pi/2 through pi/2.',
'atan': 'Computes the tangent inverse of the given value.',
'cbrt': 'Computes the cube-root of the given value.',
'ceil': 'Computes the ceiling of the given value.',
'cos': 'Computes the cosine of the given value.',
'cosh': 'Computes the hyperbolic cosine of the given value.',
'exp': 'Computes the exponential of the given value.',
'expm1': 'Computes the exponential of the given value minus one.',
'floor': 'Computes the floor of the given value.',
'log': 'Computes the natural logarithm of the given value.',
'log10': 'Computes the logarithm of the given value in Base 10.',
'log1p': 'Computes the natural logarithm of the given value plus one.',
'rint': 'Returns the double value that is closest in value to the argument and' +
' is equal to a mathematical integer.',
'signum': 'Computes the signum of the given value.',
'sin': 'Computes the sine of the given value.',
'sinh': 'Computes the hyperbolic sine of the given value.',
'tan': 'Computes the tangent of the given value.',
'tanh': 'Computes the hyperbolic tangent of the given value.',
'toDegrees': '.. note:: Deprecated in 2.1, use degrees instead.',
'toRadians': '.. note:: Deprecated in 2.1, use radians instead.',
'bitwiseNOT': 'Computes bitwise not.',
}
_functions_1_6 = {
# unary math functions
'stddev': 'Aggregate function: returns the unbiased sample standard deviation of' +
' the expression in a group.',
'stddev_samp': 'Aggregate function: returns the unbiased sample standard deviation of' +
' the expression in a group.',
'stddev_pop': 'Aggregate function: returns population standard deviation of' +
' the expression in a group.',
'variance': 'Aggregate function: returns the population variance of the values in a group.',
'var_samp': 'Aggregate function: returns the unbiased variance of the values in a group.',
'var_pop': 'Aggregate function: returns the population variance of the values in a group.',
'skewness': 'Aggregate function: returns the skewness of the values in a group.',
'kurtosis': 'Aggregate function: returns the kurtosis of the values in a group.',
'collect_list': 'Aggregate function: returns a list of objects with duplicates.',
'collect_set': 'Aggregate function: returns a set of objects with duplicate elements' +
' eliminated.',
}
_functions_2_1 = {
# unary math functions
'degrees': 'Converts an angle measured in radians to an approximately equivalent angle ' +
'measured in degrees.',
'radians': 'Converts an angle measured in degrees to an approximately equivalent angle ' +
'measured in radians.',
}
_functions_2_2 = {
'to_date': 'Converts a string date into a DateType using the (optionally) specified format.',
'to_timestamp': 'Converts a string timestamp into a timestamp type using the ' +
'(optionally) specified format.',
}
# math functions that take two arguments as input
_binary_mathfunctions = {
'atan2': 'Returns the angle theta from the conversion of rectangular coordinates (x, y) to' +
'polar coordinates (r, theta).',
'hypot': 'Computes ``sqrt(a^2 + b^2)`` without intermediate overflow or underflow.',
'pow': 'Returns the value of the first argument raised to the power of the second argument.',
}
_window_functions = {
'row_number':
"""returns a sequential number starting at 1 within a window partition.""",
'dense_rank':
"""returns the rank of rows within a window partition, without any gaps.
The difference between rank and dense_rank is that dense_rank leaves no gaps in ranking
sequence when there are ties. That is, if you were ranking a competition using dense_rank
and had three people tie for second place, you would say that all three were in second
place and that the next person came in third. Rank would give me sequential numbers, making
the person that came in third place (after the ties) would register as coming in fifth.
This is equivalent to the DENSE_RANK function in SQL.""",
'rank':
"""returns the rank of rows within a window partition.
The difference between rank and dense_rank is that dense_rank leaves no gaps in ranking
sequence when there are ties. That is, if you were ranking a competition using dense_rank
and had three people tie for second place, you would say that all three were in second
place and that the next person came in third. Rank would give me sequential numbers, making
the person that came in third place (after the ties) would register as coming in fifth.
This is equivalent to the RANK function in SQL.""",
'cume_dist':
"""returns the cumulative distribution of values within a window partition,
i.e. the fraction of rows that are below the current row.""",
'percent_rank':
"""returns the relative rank (i.e. percentile) of rows within a window partition.""",
}
Spark-PySpark sql各种内置函数的更多相关文章
- SQL Server 内置函数、临时对象、流程控制
SQL Server 内置函数 日期时间函数 --返回当前系统日期时间 select getdate() as [datetime],sysdatetime() as [datetime2] getd ...
- [SQL]SUTFF内置函数的用法 (删除指定长度的字符并在指定的起始点插入另一组字符)
STUFF 删除指定长度的字符并在指定的起始点插入另一组字符. 语法 STUFF ( character_expression , start , length , character_express ...
- 10、SQL Server 内置函数、临时对象、流程控制
SQL Server 内置函数 日期时间函数 --返回当前系统日期时间 select getdate() as [datetime],sysdatetime() as [datetime2] getd ...
- sql server内置函数
MSDN标准文档:https://msdn.microsoft.com/zh-cn/library/ff848784(v=sql.120).aspx 配置函数 select @@servername ...
- Sql Server内置函数实现MD5加密
实例 MD5加密“123456”: HashBytes('MD5','123456') 结果:0xE10ADC3949BA59ABBE56E057F20F883E (提示:看完最后,结果要进行转换.) ...
- 总结Sql Server内置函数实现MD5加密
--MD5加密 --HashBytes ('加密方式', '待加密的值') --加密方式= MD2 | MD4 | MD5 | SHA | SHA1 --返回值类型:varbinary(maximum ...
- mysql 内置函数和sql server 内置函数的区别
以下函数均没有对参数做说明,使用的使用需要了解其参数内容 数据库 sql server mysql oracle 举例 获得当前系统时间 getdate() now() sysdate 注意不是函数 ...
- SQL Server 内置函数实现MD5加密
一.MD5加密 HASHBYTES ('加密方式', '待加密的值') 加密方式= MD2 | MD4 | MD5 | SHA | SHA1 返回值类型:varbinary(maxim ...
- [SQL]SUTFF内置函数的用法
STUFF 删除指定长度的字符并在指定的起始点插入另一组字符. 语法 STUFF ( character_expression , start , length , character_express ...
随机推荐
- ASP.NET Core中使用EF Core(MySql)Database First
⒈创建数据库,在数据中执行以下脚本. CREATE DATABASE Blogging; USE Blogging; CREATE TABLE Blog ( BlogId int not null P ...
- mysql事务、redo日志、undo日志、checkpoint详解
转载: https://zhuanlan.zhihu.com/p/34650908 事务: 说起mysql innodb存储引擎的事务,首先想到就是ACID(不知道的请google),数据库是如何做到 ...
- sql server join联结
join学习起来有点乱,现做如下整理: table A id abc 1 a 2 b 3 c 4 d table B id abc 1 e 2 a 3 f 4 c --join或者inner join ...
- HTML5-placeholder属性
HTML 5<input> placeholder属性 placeholder属性提供可描述输入字段预期值的提示信息(hint). 该提示会在输入字段为空时显示,并会在字段获得焦点时消失. ...
- 第四篇 jQuery中的事件与应用
4.1 事件中的冒泡现象,ready()方法 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" & ...
- MySql查询进阶
1.1 as关键字 用于 给显示结果中字段 或者 表 起别名 select 别名.字段名 from 表名 as 别名 where 条件语句 # 对字段起别名 select id as '编号', na ...
- 记一次nodemanager无法启动的情况
早上看CDH发现有一个nodemanager挂掉 然后查看对应的日志. 发现在日志里面并没有错误.,然然后发现服务器的磁盘满了,赶紧清理磁盘空间 清理磁盘的时候发现主要是/tmp目录下面生成了很多 ...
- Linux环境测试机器端口连通性
生产中,有很大一部分的问题都是由于不同机器间网络不同导致的,那么如何判断两台机器之间的连通性?本文介绍几种常见的方式: telnet方法wget方法ssh方法curl方法1. telnet方法格式:t ...
- 【hdu 6071】Lazy Running
菜鸡永远都在做着变聚的梦. 题意 有 \(4\) 个点连成一个环,连接顺序依次为 \(1-2-3-4-1\).相邻两个点之间有个距离 \(d_{i,i+1}\)(特别地,当 \(i=4\) 时为 \( ...
- 配置Nexus为maven的私服
1.配置Nexus为maven的私服 第一种方式:在项目的POM中如下配置 <repositories> <repository> <id>nexus_public ...