题目1 : 数论六·模线性方程组

时间限制:10000ms
单点时限:1000ms
内存限制:256MB

描述

小Ho:今天我听到一个挺有意思的故事!

小Hi:什么故事啊?

小Ho:说秦末,刘邦的将军韩信带领1500名士兵经历了一场战斗,战死四百余人。韩信为了清点人数让士兵站成三人一排,多出来两人;站成五人一排,多出来四人;站成七人一排,多出来六人。韩信立刻就知道了剩余人数为1049人。

小Hi:韩信点兵嘛,这个故事很有名的。

小Ho:我觉得这里面一定有什么巧妙的计算方法!不然韩信不可能这么快计算出来。

小Hi:那我们不妨将这个故事的数学模型提取出来看看?

小Ho:好!

<小Ho稍微思考了一下>

小Ho:韩信是为了计算的是士兵的人数,那么我们设这个人数为x。三人成排,五人成排,七人成排,即x mod 3, x mod 5, x mod 7。也就是说我们可以列出一组方程:

x mod 3 = 2
x mod 5 = 4
x mod 7 = 6

韩信就是根据这个方程组,解出了x的值。

小Hi:嗯,就是这样!我们将这个方程组推广到一般形式:给定了n组除数m[i]和余数r[i],通过这n组(m[i],r[i])求解一个x,使得x mod m[i] = r[i]。

小Ho:我怎么感觉这个方程组有固定的解法?

小Hi:这个方程组被称为模线性方程组。它确实有固定的解决方法。不过在我告诉你解法之前,你不如先自己想想怎么求解如何?

小Ho:好啊,让我先试试啊!

提示:模线性方程组

输入

第1行:1个正整数, N,2≤N≤1,000。

第2..N+1行:2个正整数, 第i+1行表示第i组m,r,2≤m≤20,000,000,0≤r<m。

计算过程中尽量使用64位整型。

输出

第1行:1个整数,表示满足要求的最小X,若无解输出-1。答案范围在64位整型内。

样例输入
3
3 2
5 3
7 2
样例输出
23

解答:

一开始没看提示,想的是暴力法,输出满足n个式子的x值,果然提交了,AC不了,超时。赋下超时代码:

 #include "iostream"
#define MAX 20000000 using namespace std; typedef long long LL; LL m[MAX], r[MAX], n, k; int main()
{
cin>>n; if(n<)
return -; for (int i = ; i<n; i++)
cin >> m[i] >> r[i]; for(int i=;i<MAX;i++){
k = ;
for (int j = ; j < n; j++){
if(i%m[j]==r[j])
k++;
}
if (k == n){
cout << i << endl;
system("pause");
}
}
}

期间还出现了个小问题,定义超大数组的时候提示栈溢出。,如果放在main函数里面,栈会overflow。

因为局部变量存在栈上,一般大小2m,所以会溢出,,,定义成全局变量或static的话,就ok了,大小由系统决定。

AC代码:

 #include "iostream"
#define MAX 20000000 using namespace std; typedef long long LL; LL m[MAX], r[MAX], n ; LL gcd(LL a, LL b){
if (b == )
return a;
return gcd(b, a%b);
} void extend_gcd(LL a, LL b, LL &x, LL &y){
if (b == ){
x = ;
y = ;
return ;
} LL x1, y1;
extend_gcd(b, a%b, x1, y1);
x = y1;
y = x1 - (a / b)*y1;
} LL Solve()
{
LL M = m[], R = r[], d, k1, k2, c;
for (int i = ; i <= n; i++)
{
d = gcd(M, m[i]);
c = r[i] - R;
if (c % d)
return -; // 无解的情况
extend_gcd(M / d, m[i] / d, k1, k2);
k1 = (c / d*k1) % (m[i] / d); // 计算x = m[1] * k[1] + r[1]
R = R + k1*M; // 求解lcm(M, m[i])
M = M / d*m[i]; // 求解合并后的新R,同时让R最小
R %= M;
}
if (R < )
R = R + M;
return R;
} int main()
{
cin >> n; for (int i = ; i <= n; i++)
cin >> m[i] >> r[i];
cout << Solve() << endl; system("pause");
}

hiho一下 第九十七周 数论六·模线性方程组的更多相关文章

  1. hihoCoder 1303 数论六·模线性方程组

    Description 求解模线性方程组, \(m_i\) 不互质. Sol 扩展欧几里得+中国剩余定理. 首先两两合并跟上篇博文一样. 每次通解就是每次增加两个数的最小公倍数,这对取模任意一个数都是 ...

  2. hiho一下 第九十四周 数论三·约瑟夫问题

    数论三·约瑟夫问题 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Hi和小Ho的班级正在进行班长的选举,他们决定通过一种特殊的方式来选择班长. 首先N个候选人围成一个 ...

  3. hihocode 九十七周 中国剩余定理

    题目1 : 数论六·模线性方程组 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Ho:今天我听到一个挺有意思的故事! 小Hi:什么故事啊? 小Ho:说秦末,刘邦的将军 ...

  4. 圆内,求离圆心最远的整数点 hiho一下第111周 Farthest Point

    // 圆内,求离圆心最远的整数点 hiho一下第111周 Farthest Point // 思路:直接暴力绝对T // 先确定x范围,每个x范围内,离圆心最远的点一定是y轴两端的点.枚举x的范围,再 ...

  5. 201771010134杨其菊《面向对象程序设计(java)》第十七周学习总结

    第十七周学习总结 1. 程序是一段静态的代码,它是应用程序执行的蓝本.进程是程序的一次动态执行,它对应了从代码加载.执行至执行完毕的一个完整过程.操作系统为每个进程分配一段独立的内存空间和系统资源,包 ...

  6. “Hello World!”团队第六周第六次会议

    “Hello World!”团队第六周第六次会议   博客内容: 一.会议时间 二.会议地点 三.会议成员 四.会议内容 五.todo list 六.会议照片 七.燃尽图 八.checkout& ...

  7. “Hello World!”团队第五周第六次会议

    “Hello World!”团队第五周第六次会议   博客内容: 一.会议时间 二.会议地点 三.会议成员 四.会议内容 五.todo list 六.会议照片 七.燃尽图 八.checkout& ...

  8. “全栈2019”Java第九十七章:在方法中访问局部内部类成员详解

    难度 初级 学习时间 10分钟 适合人群 零基础 开发语言 Java 开发环境 JDK v11 IntelliJ IDEA v2018.3 文章原文链接 "全栈2019"Java第 ...

  9. hiho一下 第115周:网络流一•Ford-Fulkerson算法 (Edmond-Karp,Dinic,SAP)

    来看一道最大流模板水题,借这道题来学习一下最大流的几个算法. 分别用Edmond-Karp,Dinic ,SAP来实现最大流算法. 从运行结过来看明显SAP+当前弧优化+gap优化速度最快.   hi ...

随机推荐

  1. sublime 插件的安装

    sublime(text3)插件的安装 之前一直对sublime插件的安装搞不懂,导致自己不能充分地运用它的便捷性.昨天仔细看了下百度,恍然大悟,一下子把必备的插件都装了: 对于插件的安装,首先要在s ...

  2. iOS---cell-自适应高度

    RootViewController: // // RootViewController.m // UI__cell自适应高度 // // Created by dllo on 16/3/15. // ...

  3. zabbix_监控_邮件预警

      一.解决的问题:当触发器满足条件被触发时,发邮件进行通知   二.软件及方案 使用外部邮箱发送邮件 使用mailx发送邮件,版本为12.4 zabbix版本为2.2.2 zabbix中使用执行脚本 ...

  4. 【BZOJ 3732】 Network Kruskal重构树+倍增LCA

    Kruskal重构树裸题, Sunshine互测的A题就是Kruskal重构树,我通过互测了解到了这个神奇的东西... 理解起来应该没什么难度吧,但是我的Peaks连WA,,, 省选估计要滚粗了TwT ...

  5. 【BZOJ 3036】 绿豆蛙的归宿

    求期望的题目(~~~water~~~) 压了下代码,压成15行hhh: 我把代码压成这么丑估计也没有人看吧: 毕竟是zky讲的一个水题,就当给博客除草了:    dfs回溯时求当前节点的f,除以当前节 ...

  6. 使用X-UA-Compatible来设置IE浏览器兼容模式

    文件兼容性用于定义让IE如何编译你的网页.此文件解释文件兼容性,如何指定你网站的文件兼容性模式以及如何判断一个网页该使用的文件模式. 前言 为了帮助确保你的网页在所有未来的IE版本都有一致的外观,IE ...

  7. IRP IO_STACK_LOCATION 《寒江独钓》内核学习笔记(1)

    在学习内核过滤驱动的过程中,遇到了大量的涉及IRP操作的代码,这里有必要对IRP的数据结构和与之相关的API函数做一下笔记. 1. 相关阅读资料 <深入解析 windows 操作系统(第4版,中 ...

  8. tomcat7禁用catalina.out输出

    tomcat7中禁用catalina.out的输出,又可能很大. 直接修改catalina.sh文件的输出语句. 在文件中找到以下内容. if [ -z "$CATALINA_OUT&quo ...

  9. yield return 和 yield break

    //yield return 返回类型必须为 IEnumerable.IEnumerable<T>.IEnumerator 或 IEnumerator<T>. static I ...

  10. 更改动软代码生成器模板 验证Model数据合法性

    1.第一个模板 判断字段是否为空 类 IsNullableType.cmt static public partial class CommonType { public static bool Is ...