hiho一下 第九十七周 数论六·模线性方程组
题目1 : 数论六·模线性方程组
描述
小Ho:今天我听到一个挺有意思的故事!
小Hi:什么故事啊?
小Ho:说秦末,刘邦的将军韩信带领1500名士兵经历了一场战斗,战死四百余人。韩信为了清点人数让士兵站成三人一排,多出来两人;站成五人一排,多出来四人;站成七人一排,多出来六人。韩信立刻就知道了剩余人数为1049人。
小Hi:韩信点兵嘛,这个故事很有名的。
小Ho:我觉得这里面一定有什么巧妙的计算方法!不然韩信不可能这么快计算出来。
小Hi:那我们不妨将这个故事的数学模型提取出来看看?
小Ho:好!
<小Ho稍微思考了一下>
小Ho:韩信是为了计算的是士兵的人数,那么我们设这个人数为x。三人成排,五人成排,七人成排,即x mod 3, x mod 5, x mod 7。也就是说我们可以列出一组方程:
x mod 3 = 2
x mod 5 = 4
x mod 7 = 6
韩信就是根据这个方程组,解出了x的值。
小Hi:嗯,就是这样!我们将这个方程组推广到一般形式:给定了n组除数m[i]和余数r[i],通过这n组(m[i],r[i])求解一个x,使得x mod m[i] = r[i]。
小Ho:我怎么感觉这个方程组有固定的解法?
小Hi:这个方程组被称为模线性方程组。它确实有固定的解决方法。不过在我告诉你解法之前,你不如先自己想想怎么求解如何?
小Ho:好啊,让我先试试啊!
输入
第1行:1个正整数, N,2≤N≤1,000。
第2..N+1行:2个正整数, 第i+1行表示第i组m,r,2≤m≤20,000,000,0≤r<m。
计算过程中尽量使用64位整型。
输出
第1行:1个整数,表示满足要求的最小X,若无解输出-1。答案范围在64位整型内。
- 样例输入
-
3
3 2
5 3
7 2 - 样例输出
-
23
解答:
一开始没看提示,想的是暴力法,输出满足n个式子的x值,果然提交了,AC不了,超时。赋下超时代码:
#include "iostream"
#define MAX 20000000 using namespace std; typedef long long LL; LL m[MAX], r[MAX], n, k; int main()
{
cin>>n; if(n<)
return -; for (int i = ; i<n; i++)
cin >> m[i] >> r[i]; for(int i=;i<MAX;i++){
k = ;
for (int j = ; j < n; j++){
if(i%m[j]==r[j])
k++;
}
if (k == n){
cout << i << endl;
system("pause");
}
}
}期间还出现了个小问题,定义超大数组的时候提示栈溢出。
,如果放在main函数里面,栈会overflow。
因为局部变量存在栈上,一般大小2m,所以会溢出,,,定义成全局变量或static的话,就ok了,大小由系统决定。
AC代码:
#include "iostream"
#define MAX 20000000 using namespace std; typedef long long LL; LL m[MAX], r[MAX], n ; LL gcd(LL a, LL b){
if (b == )
return a;
return gcd(b, a%b);
} void extend_gcd(LL a, LL b, LL &x, LL &y){
if (b == ){
x = ;
y = ;
return ;
} LL x1, y1;
extend_gcd(b, a%b, x1, y1);
x = y1;
y = x1 - (a / b)*y1;
} LL Solve()
{
LL M = m[], R = r[], d, k1, k2, c;
for (int i = ; i <= n; i++)
{
d = gcd(M, m[i]);
c = r[i] - R;
if (c % d)
return -; // 无解的情况
extend_gcd(M / d, m[i] / d, k1, k2);
k1 = (c / d*k1) % (m[i] / d); // 计算x = m[1] * k[1] + r[1]
R = R + k1*M; // 求解lcm(M, m[i])
M = M / d*m[i]; // 求解合并后的新R,同时让R最小
R %= M;
}
if (R < )
R = R + M;
return R;
} int main()
{
cin >> n; for (int i = ; i <= n; i++)
cin >> m[i] >> r[i];
cout << Solve() << endl; system("pause");
}
hiho一下 第九十七周 数论六·模线性方程组的更多相关文章
- hihoCoder 1303 数论六·模线性方程组
Description 求解模线性方程组, \(m_i\) 不互质. Sol 扩展欧几里得+中国剩余定理. 首先两两合并跟上篇博文一样. 每次通解就是每次增加两个数的最小公倍数,这对取模任意一个数都是 ...
- hiho一下 第九十四周 数论三·约瑟夫问题
数论三·约瑟夫问题 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Hi和小Ho的班级正在进行班长的选举,他们决定通过一种特殊的方式来选择班长. 首先N个候选人围成一个 ...
- hihocode 九十七周 中国剩余定理
题目1 : 数论六·模线性方程组 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Ho:今天我听到一个挺有意思的故事! 小Hi:什么故事啊? 小Ho:说秦末,刘邦的将军 ...
- 圆内,求离圆心最远的整数点 hiho一下第111周 Farthest Point
// 圆内,求离圆心最远的整数点 hiho一下第111周 Farthest Point // 思路:直接暴力绝对T // 先确定x范围,每个x范围内,离圆心最远的点一定是y轴两端的点.枚举x的范围,再 ...
- 201771010134杨其菊《面向对象程序设计(java)》第十七周学习总结
第十七周学习总结 1. 程序是一段静态的代码,它是应用程序执行的蓝本.进程是程序的一次动态执行,它对应了从代码加载.执行至执行完毕的一个完整过程.操作系统为每个进程分配一段独立的内存空间和系统资源,包 ...
- “Hello World!”团队第六周第六次会议
“Hello World!”团队第六周第六次会议 博客内容: 一.会议时间 二.会议地点 三.会议成员 四.会议内容 五.todo list 六.会议照片 七.燃尽图 八.checkout& ...
- “Hello World!”团队第五周第六次会议
“Hello World!”团队第五周第六次会议 博客内容: 一.会议时间 二.会议地点 三.会议成员 四.会议内容 五.todo list 六.会议照片 七.燃尽图 八.checkout& ...
- “全栈2019”Java第九十七章:在方法中访问局部内部类成员详解
难度 初级 学习时间 10分钟 适合人群 零基础 开发语言 Java 开发环境 JDK v11 IntelliJ IDEA v2018.3 文章原文链接 "全栈2019"Java第 ...
- hiho一下 第115周:网络流一•Ford-Fulkerson算法 (Edmond-Karp,Dinic,SAP)
来看一道最大流模板水题,借这道题来学习一下最大流的几个算法. 分别用Edmond-Karp,Dinic ,SAP来实现最大流算法. 从运行结过来看明显SAP+当前弧优化+gap优化速度最快. hi ...
随机推荐
- centos6.5上安装Openfire 4.0.3
更新时间:2016年11月9日 00:18:27 博主的安装环境 物理机: Win7 SP1 64位 ip:192.168.111.1 (用于安装spark 2.8.1) VM虚拟 ...
- [设计模式] javascript 之 单件模式
单件模式说明 1. 说明:单件模式,就是静态化的访问中已经实例化的对象,这个对象只能通过一个唯一的入口访问,已经实例或待实例化的对象:面向对象语言如Java, .Net C#这样的服务端动态语言里,能 ...
- iOS--隐藏和显示TabBar的方法
1.隐藏TabBar: - (void)hideTabBar { if (self.tabBarController.tabBar.hidden == YES) { return; } UIView ...
- 20步打造最安全的NGINX WEB服务器
Nginx 是一个轻量级的,高性能的Web服务器以及反向代理和邮箱(IMAP/POP3)代理服务器.它运行在UNIX,GNU /linux,BSD 各种版本,Mac OS X,Solaris和Wind ...
- hdu2846 字典树
给你一堆字符串,然后再给你几个查询,前面那些字符串中有多少个包含了这个串.所以可以把开始inset()的字符遍历一遍,同时可能出现该字符串在某个字符串中有多次出现,所以还要用flag标记,来区分不同的 ...
- Html-Css-设置DIV边框圆滑
border-radius: 10px; -moz-border-radius: 10px; -webkit-border-radius: 10px; -o-border-radius: 10px; ...
- SPOJ Pouring Water
传送门 POUR1 - Pouring water #gcd #recursion Given two vessels, one of which can accommodate a litres o ...
- iOS 开发之内购 – AppStore
前言本文会给大家详细介绍iOS内购,虽然之前网上也有内购的教程,但是还不够详细,我重新整理出一份教程,希望对大家有所帮助. 基于Xcode7.1.1版本,模拟器iphone6,9.1系统. ...
- Maven学习笔记-03-Eclipse下maven项目在Tomcat7和Jetty6中部署调试
现在最新的Eclipse Luna Release 已经内置了Maven插件,这让我们的工作简洁了不少,只要把项目直接导入就可以,不用考虑插件什么的问题,但是导入之后的项目既可以部署在Tomcat也可 ...
- jquery中datagrid中getSelected和getSelections的应用
http://blog.sina.com.cn/s/blog_8e50ede90101fff9.html 刚开始使用jquery的datagrid就知道如果要对特定的一行进行编辑,可以是 $('#on ...