BZOJ-1951 古代猪文 (组合数取模Lucas+中国剩余定理+拓展欧几里得+快速幂)
数论神题了吧算是
1951: [Sdoi2010]古代猪文
Time Limit: 1 Sec Memory Limit: 64 MB
Submit: 1573 Solved: 650
[Submit][Status][Discuss]
Description
“在那山的那边海的那边有一群小肥猪。他们活泼又聪明,他们调皮又灵敏。他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心……” ——选自猪王国民歌 很久很久以前,在山的那边海的那边的某片风水宝地曾经存在过一个猪王国。猪王国地理位置偏僻,实施的是适应当时社会的自给自足的庄园经济,很少与外界联系,商贸活动就更少了。因此也很少有其他动物知道这样一个王国。 猪王国虽然不大,但是土地肥沃,屋舍俨然。如果一定要拿什么与之相比的话,那就只能是东晋陶渊明笔下的大家想象中的桃花源了。猪王勤政爱民,猪民安居乐业,邻里和睦相处,国家秩序井然,经济欣欣向荣,社会和谐稳定。和谐的社会带给猪民们对工作火红的热情和对未来的粉色的憧憬。 小猪iPig是猪王国的一个很普通的公民。小猪今年10岁了,在大肥猪学校上小学三年级。和大多数猪一样,他不是很聪明,因此经常遇到很多或者稀奇古怪或者旁人看来轻而易举的事情令他大伤脑筋。小猪后来参加了全猪信息学奥林匹克竞赛(Pig Olympiad in Informatics, POI),取得了不错的名次,最终保送进入了猪王国大学(Pig Kingdom University, PKU)深造。 现在的小猪已经能用计算机解决简单的问题了,比如能用P++语言编写程序计算出A + B的值。这个“成就”已经成为了他津津乐道的话题。当然,不明真相的同学们也开始对他刮目相看啦~ 小猪的故事就将从此展开,伴随大家两天时间,希望大家能够喜欢小猪。 题目描述 猪王国的文明源远流长,博大精深。 iPig在大肥猪学校图书馆中查阅资料,得知远古时期猪文文字总个数为N。当然,一种语言如果字数很多,字典也相应会很大。当时的猪王国国王考虑到如果修一本字典,规模有可能远远超过康熙字典,花费的猪力、物力将难以估量。故考虑再三没有进行这一项劳猪伤财之举。当然,猪王国的文字后来随着历史变迁逐渐进行了简化,去掉了一些不常用的字。 iPig打算研究古时某个朝代的猪文文字。根据相关文献记载,那个朝代流传的猪文文字恰好为远古时期的k分之一,其中k是N的一个正约数(可以是1和N)。不过具体是哪k分之一,以及k是多少,由于历史过于久远,已经无从考证了。 iPig觉得只要符合文献,每一种能整除N的k都是有可能的。他打算考虑到所有可能的k。显然当k等于某个定值时,该朝的猪文文字个数为N / k。然而从N个文字中保留下N / k个的情况也是相当多的。iPig预计,如果所有可能的k的所有情况数加起来为P的话,那么他研究古代文字的代价将会是G的P次方。 现在他想知道猪王国研究古代文字的代价是多少。由于iPig觉得这个数字可能是天文数字,所以你只需要告诉他答案除以999911659的余数就可以了。
Input
有且仅有一行:两个数N、G,用一个空格分开。
Output
有且仅有一行:一个数,表示答案除以999911659的余数。
Sample Input
4 2
Sample Output
2048
HINT
10%的数据中,1 <= N <= 50;
20%的数据中,1 <= N <= 1000;
40%的数据中,1 <= N <= 100000;
100%的数据中,1 <= G <= 1000000000,1 <= N <= 1000000000。
Source
Sdoi2010 Contest2
题解:
设指数为M,模数为P 则依据费马小定理可以进行转化:
G^M mod P = G^(M mod (P-1) ) ( G != P)
P-1不为质,所以拆成指数,最后用中国剩余定理合并即可
code:
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
int pp[4]={2,3,4679,35617};int G,N,P=999911659;
int jc[4][50000];
int M[4];
void exgcd(int a,int b,int &x,int &y)
{
if (b==0) {x=1;y=0;return;}
exgcd(b,a%b,x,y);
int tmp=x;x=y;y=tmp-a/b*y;
}
int quick_pow(long long a,int b,int p)
{
int ans=1;
for(int i=b;i;i>>=1,a=(a*a)%p)
if(i&1)ans=(ans*a)%p;
return ans;
}
void cs()
{
jc[1][0]=jc[2][0]=jc[3][0]=jc[0][0]=1;
for (int i=0; i<4; i++)
for (int j=1; j<=pp[i]; j++)
jc[i][j]=(jc[i][j-1]*j)%pp[i];
}
int C(int n,int m,int p)
{
if (n<m) return 0;
return jc[p][n]*quick_pow(jc[p][m]*jc[p][n-m],pp[p]-2,pp[p])%pp[p];
}
int lucas(int n,int m,int p)
{
if (m==0) return 1;
return C(n%pp[p],m%pp[p],p)*lucas(n/pp[p],m/pp[p],p)%pp[p];
}
int china()
{
int a1,b1,a2,b2,a,b,c,x,y;
a1=pp[0],b1=M[0];
for(int i=1;i<4;i++)
{
a2=pp[i],b2=M[i];
a=a1;b=a2;c=b2-b1;
exgcd(a,b,x,y);
x=((c*x)%b+b)%b;
b1=b1+a1*x;
a1=a1*b;
}
return b1;
}
int work()
{
G%=P;
for (int i=1; i*i<=N; i++)
{
if (N%i==0)
{
int tmp=N/i;
for (int j=0; j<4; j++)
{
if (tmp!=i)
M[j]=(M[j]+lucas(N,i,j))%pp[j];
M[j]=(M[j]+lucas(N,tmp,j))%pp[j];
}
}
}
printf("%d\n",quick_pow(G,china(),P));
}
int main()
{
cs();
scanf("%d%d",&N,&G);
if (G==P) {puts("0");return 0;}
work();
return 0;
}
BZOJ-1951 古代猪文 (组合数取模Lucas+中国剩余定理+拓展欧几里得+快速幂)的更多相关文章
- BZOJ 1951 古代猪文
快速幂+枚举质因数+欧拉定理+lucas定理+CRT. 注意两点: 1.if (n<m) C(n,m)=0. 2.这里0^0时应该return 0. #include<iostream&g ...
- 组合数取模Lucas定理及快速幂取模
组合数取模就是求的值,根据,和的取值范围不同,采取的方法也不一样. 下面,我们来看常见的两种取值情况(m.n在64位整数型范围内) (1) , 此时较简单,在O(n2)可承受的情况下组合数的计算可以 ...
- hdu 3944 DP? 组合数取模(Lucas定理+预处理+帕斯卡公式优化)
DP? Problem Description Figure 1 shows the Yang Hui Triangle. We number the row from top to bottom 0 ...
- 组合数取模&&Lucas定理题集
题集链接: https://cn.vjudge.net/contest/231988 解题之前请先了解组合数取模和Lucas定理 A : FZU-2020 输出组合数C(n, m) mod p (1 ...
- [转]组合数取模 Lucas定理
对于C(n, m) mod p.这里的n,m,p(p为素数)都很大的情况.就不能再用C(n, m) = C(n - 1,m) + C(n - 1, m - 1)的公式递推了. 这里用到Lusac定理 ...
- HDU5446 Unknown Treasure(组合数膜合数-->Lucas+中国剩余定理)
>On the way to the next secret treasure hiding place, the mathematician discovered a cave unknown ...
- URAL 1141. RSA Attack(欧拉定理+扩展欧几里得+快速幂模)
题目链接 题意 : 给你n,e,c,并且知道me ≡ c (mod n),而且n = p*q,pq都为素数. 思路 : 这道题的确与题目名字很相符,是个RSA算法,目前地球上最重要的加密算法.RSA算 ...
- BZOJ 1951SDOI2010 古代猪文
真是到很强的数学题 先利用欧拉定理A^B %p=A^(B%φ(p)+φ(p) ) %p 然后利用卢卡斯定理求出在modφ(p)的几个约数下的解 再利用中国剩余定理合并 计算答案即可 By:大奕哥 #i ...
- bzoj 2242: [SDOI2011]计算器【扩展欧几里得+快速幂+BSGS】
第一问快速幂板子 第二问把式子转化为\( xy\equiv Z(mod P)\rightarrow xy+bP=z \),然后扩展欧几里得 第三问BSGS板子 #include<iostream ...
随机推荐
- CSU 1060 Nearest Sequence
题意:求三个序列的最长公共子序列. 思路:一开始以为只要求出前两个的LCS,然后和第三个再求一遍LCS就是答案了.但是样例就对我进行啪啪啪打脸了.实际上就跟两个序列的差不多,换成三维的就行了. 代码: ...
- Java的文件读写操作 <转>
目录: file内存----输入流----程序----输出流----file内存 java中多种方式读文件 判断文件是否存在不存在创建文件 判断文件夹是否存在不存在创建文件夹 java 写文件的三种方 ...
- MySQL数据库学习笔记(六)----MySQL多表查询之外键、表连接、子查询、索引
本章主要内容: 一.外键 二.表连接 三.子查询 四.索引 一.外键: 1.什么是外键 2.外键语法 3.外键的条件 4.添加外键 5.删除外键 1.什么是外键: 主键:是唯一标识一条记录,不能有重复 ...
- 解决: osx内置vpn连接后无法ping自己的vpn ip地址
The route table looks like this after connected to the VPN: 10.20.1/24 10.20.11.147 UGSc 0 0 utun0 1 ...
- Maven 其他功能
测试:指定测试哪些测试类,指定哪些测试类不测试,可以使用通配符 使用 Hudson 进行持续集成 持续集成:快速且高频率地自动构建项目的所有源码,并为项目成员提供丰富的反馈信息 一个典型的持续集成场景 ...
- UOJ 151 斗地主“加强”版
#151. [NOIP2015]斗地主“加强”版 统计 描述 提交 自定义测试 本题开放Hack 牛牛最近迷上了一种叫斗地主的扑克游戏.斗地主是一种使用黑桃.红心.梅花.方片的A到K加上大小王的共54 ...
- P2P NAT检测和穿越方式
一. NAT类型 本文转自:http://www.cnblogs.com/hummersofdie/archive/2013/05/21/3090163.html 1.基本的NAT类型:只 ...
- 关于浏览器cookie的那些事儿
昨天接到一个小需求,就是在ipad上访问某页面,页面顶部出现一个下载客户端的提示,点击关闭按钮后,提示信息消失,信息存入cookie,在cookie未过期之前,除非用户自己清除浏览器的cookie,否 ...
- linux内核分析 第七周
一.课堂相关 (一)预处理.编译.链接和目标文件的格式 1.可执行程序是怎么得来的 C代码--预处理--汇编代码--目标代码--可执行文件 预处理负责把include的文件包含进来及宏替换工作. he ...
- Opencv step by step - 基本数据类型
CvArr,CvMat,IplImage这三者是继承的关系. 打开opencv 3.0的源码: cvArr /* CvArr* is used to pass arbitrary * array-l ...