Description

给出一个n个节点的有根树(编号为0到n-1,根节点为0)。一个点的深度定义为这个节点到根的距离+1。
设dep[i]表示点i的深度,LCA(i,j)表示i与j的最近公共祖先。
有q次询问,每次询问给出l r z,求sigma_{l<=i<=r}dep[LCA(i,z)]。
(即,求在[l,r]区间内的每个节点i与z的最近公共祖先的深度之和)

Input

第一行2个整数n q。
接下来n-1行,分别表示点1到点n-1的父节点编号。
接下来q行,每行3个整数l r z。

Output

输出q行,每行表示一个询问的答案。每个答案对201314取模输出

Sample Input

5 2
0
0
1
1
1 4 3
1 4 2

Sample Output

8
5

HINT

共5组数据,n与q的规模分别为10000,20000,30000,40000,50000。

Source

数据已加强 by saffah

正解:树链剖分+线段树

解题报告:

  我这种蒟蒻一看到题目第一反应就是打暴力,真是没戏了。

  想了20分钟没想出来就弃疗了,直接看了hzwer神犇的题解,%%%hzwer:http://hzwer.com/3891.html

  其实我只看了一眼那个结论我马上就会打了,瞬间变水题。关键是操作具有很多奇奇怪怪的性质,而且转化成求路径上的点权和。

  正版推导:

  考虑这样的一种暴力,我们把 z 到根上的点全部打标记,对于 l 到 r 之间的点,向上搜索到第一个有标记的点求出它的深度统计答案。观察到,深度其实就是上面有几个已标记了的点(包括自身)。所以,我们不妨把 z 到根的路径上的点全部 +1,对于 l 到 r 之间的点询问他们到根路径上的点权和。仔细观察上面的暴力不难发现,实际上这个操作具有叠加性,且可逆。也就是说我们可以对于 l 到 r 之间的点 i,将 i 到根的路径上的点全部 +1, 转而询问 z 到根的路径上的点(包括自身)的权值和就是这个询问的答案。把询问差分下,也就是用 [1, r] − [1, l − 1] 来计算答案,那么现在我们就有一个明显的解法。从 0 到 n − 1 依次插入点 i,即将 i 到根的路径上的点全部+1。离线询问答案即可。我们现在需要一个数据结构来维护路径加和路径求和,显然树链剖分或LCT 均可以完成这个任务。树链剖分的复杂度为 O((n + q)· log n · log n),LCT的复杂度为 O((n + q)· log n),均可以完成任务。至此,题目已经被我们完美解决。

 //It is made by jump~
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <ctime>
#include <vector>
#include <queue>
#include <map>
#include <set>
using namespace std;
typedef long long LL;
const int MAXN = ;
const int MOD = ;
const int MAXQ = ;
int n,q,ecnt;
int first[MAXN],next[MAXN*],to[MAXN*];
int father[MAXN],top[MAXN],son[MAXN],size[MAXN],deep[MAXN],id[MAXN],pre[MAXN];
int ql,qr,daan; struct wen{
int pos,z,id,ans;
}a[MAXQ]; struct node{
int sum,lazy,l,r,size;
}jump[MAXN*]; inline int getint()
{
int w=,q=;
char c=getchar();
while((c<'' || c>'') && c!='-') c=getchar();
if (c=='-') q=, c=getchar();
while (c>='' && c<='') w=w*+c-'', c=getchar();
return q ? -w : w;
} inline void dfs(int x,int fa){
size[x]=;
for(int i=first[x];i;i=next[i]) {
int v=to[i]; deep[v]=deep[x]+;
dfs(v,x);
size[x]+=size[v];
if(size[v]>size[son[x]]) son[x]=v;
}
} inline void dfs2(int x,int fa){
id[x]=++ecnt; pre[ecnt]=x;
if(son[x]) top[son[x]]=top[x],dfs2(son[x],x);
for(int i=first[x];i;i=next[i]) {
int v=to[i];
if(v!=son[x]) {
top[v]=v;
dfs2(v,x);
}
}
} inline bool cmp(wen q,wen qq){ return q.pos<qq.pos; }
inline bool ccmp(wen q,wen qq){ return q.id<qq.id; } inline void pushdown(int x){
if(jump[x].size==) return ;
if(jump[x].lazy) {
int lc=x*,rc=lc+;
jump[lc].lazy+=jump[x].lazy;jump[rc].lazy+=jump[x].lazy;
jump[lc].sum+=jump[x].lazy*jump[lc].size;jump[rc].sum+=jump[x].lazy*jump[rc].size;
jump[x].lazy=;
}
} inline void update(int root,int l,int r){
pushdown(root);
if(ql<=l && r<=qr) {
jump[root].lazy++;
jump[root].sum+=jump[root].size;
return ;
}
int mid=(l+r)/; int lc=root*,rc=lc+;
if(ql<=mid) update(lc,l,mid); if(qr>mid) update(rc,mid+,r);
jump[root].sum=jump[lc].sum+jump[rc].sum;
} inline void query(int root,int l,int r){
pushdown(root);
if(ql<=l && r<=qr) {
daan+=jump[root].sum;
if(daan>=MOD) daan=daan%MOD;
return ;
}
int mid=(l+r)/; int lc=root*,rc=lc+;
if(ql<=mid) query(lc,l,mid); if(qr>mid) query(rc,mid+,r);
jump[root].sum=jump[lc].sum+jump[rc].sum;
} inline void lca(int x){
int f1=top[x];
while(x) {
ql=id[f1],qr=id[x];
update(,,n);
x=father[f1]; f1=top[x];
}
} inline int up(int x){
int f1=top[x];
int total=;
while(x) {
ql=id[f1]; qr=id[x]; daan=;
query(,,n);
total+=daan;
x=father[f1]; f1=top[x];
if(total>=MOD) total%=MOD;
}
return total;
} inline void build(int root,int l,int r){
jump[root].l=l; jump[root].r=r; jump[root].size=r-l+;
if(l==r) return ;
int mid=(l+r)/; int lc=root*,rc=lc+;
build(lc,l,mid); build(rc,mid+,r);
} inline void work(){
n=getint(); q=getint();
for(int i=;i<n;i++) {
father[i+]=getint()+;
next[++ecnt]=first[father[i+]]; to[ecnt]=i+; first[father[i+]]=ecnt;
}
deep[]=; dfs(,); top[]=; ecnt=; dfs2(,);
int x,y,z;
ecnt=;
for(int i=;i<=q;i++) {
x=getint()+; y=getint()+; z=getint()+;
a[++ecnt].pos=x-; a[ecnt].id=ecnt; a[ecnt].z=z;
a[++ecnt].pos=y; a[ecnt].id=ecnt; a[ecnt].z=z;
}
sort(a+,a+ecnt+,cmp);
int now=;
build(,,n);
for(int i=;i<=ecnt;i++) {
while(now<a[i].pos) {
lca(now+); now++;
}
a[i].ans=up(a[i].z); if(a[i].ans>MOD) a[i].ans%=MOD;
} sort(a+,a+ecnt+,ccmp);
for(int i=;i<=ecnt;i+=) printf("%d\n",( (a[i+].ans-a[i].ans)+MOD )%MOD);
} int main()
{
work();
return ;
}

BZOJ3626 LCA的更多相关文章

  1. bzoj3083 遥远的国度 && bzoj3626 LCA (树链剖分)

    今早刷了两道树剖的题目,用时两小时十五分钟= = 树剖的题目代码量普遍120+ 其实打熟练之后是很容易调的,不熟练的话代码量大可能会因为某些小细节调很久 3083:裸树剖+"换根" ...

  2. 【BZOJ4012】开店(主席树)

    [BZOJ4012]开店(主席树) 题面 Description 风见幽香有一个好朋友叫八云紫,她们经常一起看星星看月亮从诗词歌赋谈到 人生哲学.最近她们灵机一动,打算在幻想乡开一家小店来做生意赚点钱 ...

  3. 辣鸡蒟蒻Klaier的一些计划

    需要熟练的东西:cdq分治,堆,树链剖分,tarjan及其它一些图论算法,网络流,kmp,字符串哈希,线段树主席树,树状数组,斜率优化dp 需要学的东西:lct,后缀数组,AC自动机,平衡树 球队收益 ...

  4. 集训Day7

    在做过的试题里ran的...发现之前做的题有些已经生疏了 bzoj3626 LCA 一棵树,每次询问在$[l,r]$区间内的每个节点$i$与$z$的最近公共祖先的深度之和 假的LCA 有一个很平凡的想 ...

  5. 【BZOJ3626】LCA(树链剖分,Link-Cut Tree)

    [BZOJ3626]LCA(树链剖分,Link-Cut Tree) 题面 Description 给出一个n个节点的有根树(编号为0到n-1,根节点为0).一个点的深度定义为这个节点到根的距离+1. ...

  6. BZOJ3626 [LNOI2014]LCA 树链剖分 线段树

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ3626 题意概括 给出一个n个节点的有根树(编号为0到n-1,根节点为0).一个点的深度定义为这个节 ...

  7. 【BZOJ3626】[LNOI2014]LCA 离线+树链剖分+线段树

    [BZOJ3626][LNOI2014]LCA Description 给出一个n个节点的有根树(编号为0到n-1,根节点为0).一个点的深度定义为这个节点到根的距离+1.设dep[i]表示点i的深度 ...

  8. 【BZOJ3626】LCA(树上差分,树链剖分)

    题意:给出一个n个节点的有根树(编号为0到n-1,根节点为0).一个点的深度定义为这个节点到根的距离+1.设dep[i]表示点i的深度,LCA(i,j)表示i与j的最近公共祖先.有q次询问,每次询问给 ...

  9. [BZOJ3626] [LNOI2014]LCA(树链剖分)

    [BZOJ3626] [LNOI2014]LCA(树链剖分) 题面 给出一棵N个点的树,要求支持Q次询问,每次询问一个点z与编号为区间[l,r]内的点分别求最近公共祖先得到的最近公共祖先深度和.N, ...

随机推荐

  1. 第8课 goto 和 void 分析

    1. 遭人遗弃的goto (1)高手潜规则:禁用goto (2)项目经验:程序质量与goto出现的次数成反比 (3)最后的判决:将goto打入冷宫(1)循环语句的基本工作方式 [实例分析]goto副作 ...

  2. [3D跑酷] GameManager

    GameManager在游戏中很重要,处理整个游戏的流程,但是在这个类中尽量也只是写一些重要的方法,调用其它类中的方法. 枚举项 函数列表 方法解释 //当玩家碰到障碍(障碍Type,碰撞Positi ...

  3. JMeter学习(三十一)Access Log Sampler

    前提: 在tomcat\conf\server.xml默认情况下,会有一段代码: <Valve className="org.apache.catalina.valves.Access ...

  4. parse_url等函数

    $_SERVER["REQUEST_URI"]://这个可以获取域名后的url,比如/test1/parse_url.php?id=7&name=wuhan 常见用法$ur ...

  5. iOS开发之----常用函数和常数

    介绍一下Objective-c常用的函数,常数变量 算术函数 [算术函数] 函数名 说明 int rand() 随机数生成.(例)srand(time(nil)); //随机数初期化int val = ...

  6. Chrome 开发工具 Javascript 调试技巧

    http://www.w3cplus.com/tools/dev-tips.html 一.Sources 面板介绍: Sources 面板分为左中右 3 部分左:Sources 当前页面加载的资源列表 ...

  7. 基于 URL 的权限控制

    先不用框架,自己实现一下 数据库 /* SQLyog v10.2 MySQL - 5.1.72-community : Database - shiro *********************** ...

  8. C# Winform关于控件TabControl闪烁的问题

    自己重写了一个Form,然后再该form上放一个TabControl鼠标移上去会闪烁,经过网上查找解决方案,最后总算是解决了....下面附上代码: 重写一个TabControl代码如下: using ...

  9. C语言 详解多级指针与指针类型的关系

    //V推论①:指针变量的步长只与‘指针变量的值’的类型有关(指针的值的类型 == 指针指向数据的类型) //指针类型跟指针的值有关,指针是占据4个字节大小的内存空间,但是指针的类型却是各不相同的 // ...

  10. EasyUI Tree判断节点是否是叶

    方法1:  $('#domaincatalog').tree('isLeaf', node.target); 返回true或false ,true表示是叶节点, false即不是 方法2:官方文档中: ...