这篇随笔是对算法导论(Introduction to Algorithms, 3rd. Ed.)第26章 Maximum Flow的摘录。

------------------------------------------------------------------------------------------------------

1. A flow network G = (V, ) is a directed graph in which each edge (u, v) ∈ E has a nonnegative capacity c(u, v) ≥ 0.

2. We further require that if E contains an edge (u, v) then there is no edge (v, u) in the reverse direction.

3. We distinguish two vertices in a flow network: a source s and a sink t.

4. If (u, v) ∉ E, then for convenience we define (u, v) = 0, and we disallow self-loops, hence, capacity can be viewed as a function c: V × V R.

5. A flow in G is a real-valued function : V×V → R that satisfies the following two properties:

#Capacity constraint: For all u, v ∈ V, we require  0 ≤  (u, v) ≤ c (u, v)

#Flow conservation: For all u ∈ V - {s, t}, we require

   ∑ (v, u) : v ∈ V =  ∑ (u, v) : v ∈ V  

6. The value | | of a flow f is defined as | f | =  ∑ (s, v) -  ∑ (v, s).

7. In the maximum-flow problem, we are given a flow network G with source s and sink t, and we wish to find a flow of maximum value.

8. A cut (S, ) of flow network G = (V, ) is a partion of V into S and T = V - S such that s S and t ∈ T.

9. If  f  is a flow, then the net flow (S, ) across the cut (S, ) is defined to be

  (S, ) = ∑uS ∑v f (u, v) - ∑uS ∑vT (v, u).

10. The capacity of the cut (S, T)  is defined to be

  (S, ) = ∑uS ∑vT (u, v).

11. A minimum cut of  a network is a cut whose capacity is minimum over all cuts of the network.

12. Given a flow network G = (V, ) with source s and sink t. Let  f  be a flow in G, and consider a pair of vertices u, v ∈ V. We difine the residual capacity (induced by ) cf  (u, v) by

  cf  (u, v) =

        (u, v) - (u, v),  if (u, v) ∈ E

        (u, v),        if (v, u) ∈ E

        0,        otherwise

13. Given a flow network G = (V, ) and a flow f, the residual network of G induced by f is Gf  = (V, Ef ) where

  Ef  = {(u, v) ∈ V × Vcf  ( u, v) > 0}

14.  If  f  is a flow in G and f '  is a flow in  the corresponding residual network Gf, we define ff ', the augmentation of flow f  by f ', to be a function from V × V to R, defined by

(f ' ) (u, v) =

        f (u, v) + f ' (u, v) - f ' (v, u)  if (u, v) ∈ E ,

        0                otherwise .

15.(Lemma 26.1, pp. 717)

Let G = (V, E) be a flow network with source s and sink t, and let  f  be a flow in G . Let Gf be the residual network of G induced by f , and let  f ' be a flow in Gf . Then, the function  f ↑ f ' defined above is a flow in G with value | f ↑ f ' | = | f | + | f | + | f ' |.

Proof   We first verify that f ' obeys the capacity constraint for each edge in and flow conservation at each vertex in V - {, t}.

For the capacity constraint, first observe that if (u, v) ∈ E, then cf (v, u) = f (u, v). Therefore, we have f ' (vu) ≤ cf (vu) = (uv), and hence

f ↑ f ' ) (uv ) =  (uv) + f ' (uv) - f ' (v, u)

        ≥  f (u, v) + f ' (u, v) - f (u, v)

=  f ' (u, v)

       ≥  0 .

In addition,

(f ↑ f ') (u, v)

    = f (u, v) + f ' (u, v) - f ' (v, u)

    ≤ f (u, v) + f ' (u, v)

    ≤ f (u, v) + cf (u, v)

    = f (u, v) + c (u, v) - f (u, v)

    = c (u, v)

For flow conservation, because both and f ' obey flow conservation, we have that for all ∈ V - {s, t},

vVf ↑ f ' ) (u, v) = ∑vV ( f (u, v) + f ' (u, v) - f ' (v, u))

          = ∑vV f (u, v) + ∑v f ' (u, v) - ∑vV f ' (v, u)

          = ∑vV f (v, u) + ∑vV f ' (v, u) - ∑vV f ' (u, v)

          = ∑vVf (v, u) + f ' (v, u) - f ' (u, v) )

          = ∑vVf ↑ f ' ) (v, u) ,

where the third line follows from the second line by flow conservation.

Finally, = { v : (s, v) ∈ E} to be the set of vertices with edges from s, and V2 = {v : (v, s) ∈ E} to be the set of vertices to s. We have V1  ∪ V2 ⊆ V and, because we disallow antiparallel edges, V1 ∩ V2 = ∅. We now compute

| f ↑ f ' | = ∑v( f ↑ f ' ) (s, v) -  ∑v( f ↑ f ' ) (v, s)

    = ∑vV1 ( f ↑ f ' ) (s, v) - ∑vV2 ( f ↑ f ' ) (v, s) ,

where the second line follows because ( f ↑ f ' ) (w, x) is 0 if (w, x) ∉ E. We now apply the definition of f ↑ f ' to the equation above, and then reorder and group terms to abtain

f ↑ f ' |

  = ∑vV1 ( f (s, v) + f ' (s, v) - f ' (v, s)) - ∑vV2 ( f (v, s) + f ' (v, s) - f ' (s, v))

     = ∑vVf (sv) + ∑vV(sv) - ∑vV(v, s)

       - ∑vVf (vs) - ∑vV(vs) + ∑vV' (sv)

  = ∑vVf (sv) - ∑vVf (vs)

    + ∑vV(sv) + ∑vV' (sv) - ∑vV(vs) - ∑vV(vs)

  = ∑vVf (sv) - ∑vVf (vs) + ∑vV1∪V(sv) - ∑vV1∪V(vs) .

  = ∑vV f (sv) - ∑vV f (vs) + ∑v(sv) - ∑v(vs)

  = | f | + | f ' | .

Notions of Flow Networks and Flows的更多相关文章

  1. Openvswitch手册(9): Flow

    这一节我们将flow table flow table主要由ovs-ofctl命令操作 ovs-ofctl可以走和openflow controller一样的协议: ssl:ip[:port]: Th ...

  2. Spring Web Flow 入门demo(三)嵌套流程与业务结合 附源代码

    上篇博客我们说Spring web Flow与业务结合的方式主要有三种,以下我们主要介绍一下第三种的应用方式 3,运行到<action-state> 元素 SpringWeb Flow 中 ...

  3. 网络流 HDU 3549 Flow Problem

    网络流 HDU 3549 Flow Problem 题目:pid=3549">http://acm.hdu.edu.cn/showproblem.php?pid=3549 用增广路算法 ...

  4. flow

    Flow vs Stream https://wikidiff.com/flow/stream As nouns the difference between flow and stream is t ...

  5. [另开新坑] 算导v3 #26 最大流 翻译

    26 最大流 就像我们可以对一个路网构建一个有向图求最短路一样,我们也可以将一个有向图看成是一个"流量网络(flow network)",用它来回答关于流的问题. Just as ...

  6. 基于Open vSwitch的OpenFlow实践

    Open vSwitch(下面简称为 OVS)是由 Nicira Networks 主导的,运行在虚拟化平台(例如 KVM,Xen)上的虚拟交换机.在虚拟化平台上,OVS 可以为动态变化的端点提供 2 ...

  7. Open vSwitch FAQ (一)

    Basic Configuration Q: How do I configure a port as an access port? A: Add "tag=VLAN" to y ...

  8. SDN学习

    SDN & OpenFlow & Open vSwitch SDN SDN(软件定义网络)是一个概念.是一个思想.一个框架.是一种网络设计理念,它有三个特征 控制平面与转发平面分离 控 ...

  9. openvswith Frequently Asked Questions

    Open vSwitch <http://openvswitch.org> 参考地址:http://git.openvswitch.org/cgi-bin/gitweb.cgi?p=ope ...

随机推荐

  1. 自定义表单验证$setValidaity

  2. Netty指定分隔的字符

    package org.zln.netty.five.part02; import io.netty.buffer.ByteBuf; import io.netty.buffer.Unpooled; ...

  3. f2fs解析(一)f2fs如何解决wandering tree

    wandering tree问题是log-structured 文件系统(LFS) 特有的一个问题,因为LFS的脏数据是追加更新的,所以如果一个数据块变脏了,那么那个数据块的直接索引块.间接索引块都会 ...

  4. POJ 1088滑雪

    滑雪 Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 89168   Accepted: 33474 Description ...

  5. 006医疗项目-模块一:用户的查找:2.用户表查询的mapper映射的文件

    前一篇文章已经把sql语句写好了并且在PL/SQL上调试过了,是可以的.这篇文章是写对应的mapper.xml, 第一步我们先通过逆向工程去构建每个表的mapper.xml文件和pojo类.这个我们在 ...

  6. Java连接Elasticsearch集群

    package cn.test; import java.net.InetAddress; import java.net.UnknownHostException; import org.elast ...

  7. BibTex参考文献制作

    &1 制作ref.bib文件 在必应学术或者谷歌学术中搜索文章,这里以我硕士的老板和师兄的一篇文章为例: 两种搜索引擎几乎都差不多,一丢丢区别在下面会讲,点击上图中被引数的旁边那个“引用”按钮 ...

  8. Linux第三次实验报告

    北京电子科技学院(BESTI) 实     验    报     告 课程:信息安全系统设计基础             班级:201352 姓名:池彬宁 贺邦 学号:20135212 2013520 ...

  9. CUDA编程学习(三)

    我们知道一个grid包含多个block,而一个block又包含多个thread,下面将是如何进行下thread中的并行. /**** Splot a block into parallel threa ...

  10. zoeDylan.js框架-数据底层

    zoeDylan.js是墨芈自己写的一套前端框架,不过由于墨芈经验不足,所以框架内部代码有些混乱. 墨芈写这套框架的目的是为了存储以后做前端开发过程中的一些代码,简单的说这套框架就是一个大杂烩. 这套 ...