Clustering

聚类K-means

  聚类是机器学习和数据挖掘领域的主要研究方向之一,它是一种无监督学习算法,小编研究生时期的主要研究方向是“数据流自适应聚类算法”,所以对聚类算法有比较深刻的理解,于是决定开一个专题来写聚类算法,希望可以为入门及研究聚类相关算法的读者带来帮助。聚类可以作为一个单独的任务,用于寻找数据内在分布结构,也经常作为其他学习任务的前驱过程,应用十分广泛。今天,小编就带你探索聚类算法的奥秘,并介绍第一个聚类算法Kmeans。

Q:什么是聚类?

A:聚类是按照某一种特定的标准(相似性度量,如欧式距离等),把一个数据集分割成不同的类,使得同一个类中的数据对象的相似性尽可能大,不同类之间的差异性也尽可能大,如下图是一个聚类结果的可视化:

聚类有非常广泛的应用,比如根据消费记录发现不同的客户群,对基因表达进行聚类可以研究不同种群中的基因特征,对文本进行聚类可以快速找出相关主题的文章等。

Q:如何度量相似性?

A:常用的相似性度量方式主要有以下几种:

  • 欧式距离:

  • Minkowoski距离:

  • 曼哈顿距离:

  • 余弦距离:

  • Jaccard相似系数:

  • 相关系数:

Q:常用的聚类算法有哪些?

A:

  • 基于划分的聚类:k-means,mean shift

  • 层次聚类:BIRCH

  • 密度聚类:DBSCAN

  • 基于模型的聚类:GMM

  • Affinity propagation

  • 谱聚类

上面的这些算法只是简单的引入聚类的概念,在接下来的专题中,我们将具体探讨经典的聚类算法,研究它们的原理,分析优缺点,应用场景等。今天,我们就来学习最经典的一个聚类算法Kmeans

K-means

Kmeans聚类原理

Kmeans算法的思想很简单,根据给定样本集中样本间距离的大小将样本集划分为k个簇(类),使得每个点都属于距离它最近的那个聚类中心(即均值means)对应的类。之所以叫kmenas是因为它可以发现k(用户指定)个簇且簇中心用属于该簇的数据的均值来表示。

Kmeans聚类算法

数据集合X={x1,...xn}中每个样本都是d维无标签数据,kmeans聚类的目标是将这n个点分到k个簇使得簇内点到簇中心点(均值)的距离平方和最小,即求下列目标函数的最优解

  其中μi就是簇Si中点的均值。

然而解上式并不是一个简单的问题,因为它是一个NP难问题,所以kmeans算法采用一种启发式的迭代求解方法:

首先随机选择k个对象作为初始的聚类中心,然后计算每个样本到各个聚类中心的距离,并分配给距离它最近的聚类中心。一旦对象全都被分配了,重新计算每个簇的中心(均值)作为下一次迭代的新的中心点。这一过程将重复进行直到满足下列任一条件:

  • 没有对象被重新分配给新的类;

  • 聚类中心不再发生变化;

  • 误差平方和局部最小。

Tips:

  • k值的选择:一般来说我们可以根据数据的先验选择一个合适的k,如果不行,则可以通过交叉验证选择合适的k;

  • 初始化k个中心点:可以随机选择,也可以每次选择距离其他中心点尽可能远的点作为中心;

Kmeans++算法

前面我们也提到了K个初始化中心的选择对聚类算法的运行结果和时间有很大影响,Kmeans++算法提出了对随机化初始化聚类中心的优化:

  1. 从输入的数据点集合中随机选择一个点作为第一个聚类中心μ1;

  2. 对于数据集中的每一个点xi,计算它与已选择的聚类中心最近的一个的距离D(xi);

  3. 选择D(xi)较大的点作为新的聚类中心;

  4. 重复b,c直到找出k个聚类中心;

Kmeans算法小结

优点:

  • 原理简单,实现简单,收敛速度快;

  • 聚类效果比较好;

  • 可解释性强,直观;

  • 只有一个参数k;

缺点:

  • k的选择对聚类效果影响较大;

  • 对于不是凸的数据集比较难收敛;

  • 类别不均衡数据集聚类效果不好;

  • 结果局部最优;

  • 对噪声点敏感;

  • 聚类结果是球形。

小结:

今天是聚类算法学习的第一部分,内容虽然简单但是很重要,kmeans算法常常作为其他算法的基础,如之前的半监督学习以及之后会讲的谱聚类算法都会用到。相信今天的学习你一定也有了收获,聚类专题的下一篇内容是谱聚类,敬请期待!

扫码关注

获取有趣的算法知识

聚类(一)——Kmeans的更多相关文章

  1. [聚类算法] K-means 算法

    聚类 和 k-means简单概括. 聚类是一种 无监督学习 问题,它的目标就是基于 相似度 将相似的子集聚合在一起. k-means算法是聚类分析中使用最广泛的算法之一.它把n个对象根据它们的属性分为 ...

  2. 机器学习(二)——K-均值聚类(K-means)算法

    最近在看<机器学习实战>这本书,因为自己本身很想深入的了解机器学习算法,加之想学python,就在朋友的推荐之下选择了这本书进行学习,在写这篇文章之前对FCM有过一定的了解,所以对K均值算 ...

  3. R与数据分析旧笔记(十四) 动态聚类:K-means

    动态聚类:K-means方法 动态聚类:K-means方法 算法 选择K个点作为初始质心 将每个点指派到最近的质心,形成K个簇(聚类) 重新计算每个簇的质心 重复2-3直至质心不发生变化 kmeans ...

  4. 聚类:层次聚类、基于划分的聚类(k-means)、基于密度的聚类、基于模型的聚类

    一.层次聚类 1.层次聚类的原理及分类 1)层次法(Hierarchicalmethods)先计算样本之间的距离.每次将距离最近的点合并到同一个类.然后,再计算类与类之间的距离,将距离最近的类合并为一 ...

  5. K-均值聚类(K-means)算法

    https://www.cnblogs.com/ybjourney/p/4714870.html 最近在看<机器学习实战>这本书,因为自己本身很想深入的了解机器学习算法,加之想学pytho ...

  6. 【数据挖掘】聚类之k-means(转载)

    [数据挖掘]聚类之k-means 1.算法简述 分类是指分类器(classifier)根据已标注类别的训练集,通过训练可以对未知类别的样本进行分类.分类被称为监督学习(supervised learn ...

  7. ML.NET技术研究系列-2聚类算法KMeans

    上一篇博文我们介绍了ML.NET 的入门: ML.NET技术研究系列1-入门篇 本文我们继续,研究分享一下聚类算法k-means. 一.k-means算法简介 k-means算法是一种聚类算法,所谓聚 ...

  8. 【机器学习】聚类算法:层次聚类、K-means聚类

    聚类算法实践(一)--层次聚类.K-means聚类 摘要: 所谓聚类,就是将相似的事物聚集在一 起,而将不相似的事物划分到不同的类别的过程,是数据分析之中十分重要的一种手段.比如古典生物学之中,人们通 ...

  9. 【机器学习】机器学习入门08 - 聚类与聚类算法K-Means

    时间过得很快,这篇文章已经是机器学习入门系列的最后一篇了.短短八周的时间里,虽然对机器学习并没有太多应用和熟悉的机会,但对于机器学习一些基本概念已经差不多有了一个提纲挈领的了解,如分类和回归,损失函数 ...

  10. 机器学习——详解经典聚类算法Kmeans

    本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是机器学习专题的第12篇文章,我们一起来看下Kmeans聚类算法. 在上一篇文章当中我们讨论了KNN算法,KNN算法非常形象,通过距离公 ...

随机推荐

  1. LitePal的存储操作

    传统的存储数据方式   其实最传统的存储数据方式肯定是通过SQL语句拼接字符串来进行存储的,不过这种方式有点过于“传统”了,今天我们在这里就不讨论这种情况.实际上,Android专门提供了一种用于存储 ...

  2. 某CTF平台一道PHP代码审计

    这道题不是说太难,但是思路一定要灵活,灵活的利用源码中给的东西.先看一下源码. 首先要理解大意. 这段源码的大致的意思就是,先将flag的值读取放在$flag里面. 后面再接受你输入的值进行判断(黑名 ...

  3. NAT模式实现虚拟机共享主机网络

    上一节我们在虚拟机上搭建了linux系统,并利用桥接模式访问互联网,这一节,我们来配置一下通过NAT模式访问互联网.说到这里有些小伙伴可能要问了,NAT模式和桥接模式有什么区别呢? 桥接模式: 虚拟机 ...

  4. RF用例执行方法

    用例如下图: 1.执行整个项目下的所有用例 dos命令下输入robot D:\work_doc\RF (RF为下图中脚本项目Test目录的上级目录) 2.执行某个suite中的所有用例 dos命令下输 ...

  5. Python之selenium+pytesseract 实现识别验证码自动化登录脚本

    今天写自己的爆破靶场WP时候,遇到有验证码的网站除了使用pkav的工具我们同样可以通过py强大的第三方库来实现识别验证码+后台登录爆破,这里做个笔记~~~ 0x01关于selenium seleniu ...

  6. PHP array_search

    1.函数的作用:在数组中查找元素 2.函数的参数: @params mixed  $needle @params array $haystack @params bool $strict 3.例子: ...

  7. Spring Boot2 系列教程(十四)CORS 解决跨域问题

    今天和小伙伴们来聊一聊通过CORS解决跨域问题. 同源策略 很多人对跨域有一种误解,以为这是前端的事,和后端没关系,其实不是这样的,说到跨域,就不得不说说浏览器的同源策略. 同源策略是由 Netsca ...

  8. [LUOGU1122] 最大子树和 - 树形动规

    题目描述 小明对数学饱有兴趣,并且是个勤奋好学的学生,总是在课后留在教室向老师请教一些问题.一天他早晨骑车去上课,路上见到一个老伯正在修剪花花草草,顿时想到了一个有关修剪花卉的问题.于是当日课后,小明 ...

  9. 5分钟彻底理解Redis持久化

    Redis持久化 RDB快照 在默认情况下,Redis将内存数据库快照保存到dump.rdb的二进制文件中. 可以对Redis进行设置,让它在"N秒内数据集至少有N个改动", 这一 ...

  10. git jenkins 基本部署

    git  jenkins  本地仓库基础 1.安装git [root@gitlab ~]# yum install git -y 2.配置git [root@gitlab ~]# git config ...